These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31057877)

  • 1. Soft electrostatic trapping in nanofluidics.
    Gerspach MA; Mojarad N; Sharma D; Pfohl T; Ekinci Y
    Microsyst Nanoeng; 2017; 3():17051. PubMed ID: 31057877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-modified elastomeric nanofluidic devices for single nanoparticle trapping.
    Sharma D; Lim RYH; Pfohl T; Ekinci Y
    Microsyst Nanoeng; 2021; 7():46. PubMed ID: 34567759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometry-induced electrostatic trapping of nanometric objects in a fluid.
    Krishnan M; Mojarad N; Kukura P; Sandoghdar V
    Nature; 2010 Oct; 467(7316):692-5. PubMed ID: 20930840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of all-transparent polymer-based and encapsulated nanofluidic devices using nano-indentation lithography.
    Wu C; Lin TG; Zhan Z; Li Y; Tung SCH; Tang WC; Li WJ
    Microsyst Nanoeng; 2017; 3():16084. PubMed ID: 31057852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of polydimethylsiloxane (PDMS) nanofluidic chips with controllable channel size and spacing.
    Peng R; Li D
    Lab Chip; 2016 Oct; 16(19):3767-76. PubMed ID: 27539019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-state switchable plasmonic tweezers for dynamic manipulation of nano-objects.
    Messina GC; Zambrana-Puyalto X; Maccaferri N; Garoli D; De Angelis F
    Nanoscale; 2020 Apr; 12(15):8574-8581. PubMed ID: 32248206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast and efficient nanoparticle trapping using plasmonic connected nanoring apertures.
    Bouloumis TD; Kotsifaki DG; Han X; Chormaic SN; Truong VG
    Nanotechnology; 2021 Jan; 32(2):025507. PubMed ID: 32992307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanofluidic crystals: nanofluidics in a close-packed nanoparticle array.
    Ouyang W; Han J; Wang W
    Lab Chip; 2017 Sep; 17(18):3006-3025. PubMed ID: 28752878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials.
    Serey X; Mandal S; Erickson D
    Nanotechnology; 2010 Jul; 21(30):305202. PubMed ID: 20603537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deterministic Deposition of Nanoparticles with Sub-10 nm Resolution.
    Fringes S; Schwemmer C; Rawlings CD; Knoll AW
    Nano Lett; 2019 Dec; 19(12):8855-8861. PubMed ID: 31693376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A microfluidic-based hydrodynamic trap for single particles.
    Johnson-Chavarria EM; Tanyeri M; Schroeder CM
    J Vis Exp; 2011 Jan; (47):. PubMed ID: 21304467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased Flexibility in Lab-on-Chip Design with a Polymer Patchwork Approach.
    Pezzuoli D; Angeli E; Repetto D; Guida P; Firpo G; Repetto L
    Nanomaterials (Basel); 2019 Nov; 9(12):. PubMed ID: 31775220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmofluidic-Based Near-Field Optical Trapping of Dielectric Nano-Objects Using Gold Nanoislands Sensor Chips.
    Qiu G; Du Y; Guo Y; Meng Y; Gai Z; Zhang M; Wang J; deMello A
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47409-47419. PubMed ID: 36240070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas.
    Kang JH; Kim K; Ee HS; Lee YH; Yoon TY; Seo MK; Park HG
    Nat Commun; 2011 Dec; 2():582. PubMed ID: 22158437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dielectrophoretic capture of low abundance cell population using thick electrodes.
    Marchalot J; Chateaux JF; Faivre M; Mertani HC; Ferrigno R; Deman AL
    Biomicrofluidics; 2015 Sep; 9(5):054104. PubMed ID: 26392836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic free energy for a confined nanoscale object in a fluid.
    Krishnan M
    J Chem Phys; 2013 Mar; 138(11):114906. PubMed ID: 23534661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualization of Optical Vortex Forces Acting on Au Nanoparticles Transported in Nanofluidic Channels.
    Nakajima K; Tsujimura T; Doi K; Kawano S
    ACS Omega; 2022 Jan; 7(3):2638-2648. PubMed ID: 35097262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic manipulation of nano-objects by optically induced thermo-osmotic flows.
    Fränzl M; Cichos F
    Nat Commun; 2022 Feb; 13(1):656. PubMed ID: 35115502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.