These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. An Ultrathin Nanoporous Membrane Evaporator. Lu Z; Wilke KL; Preston DJ; Kinefuchi I; Chang-Davidson E; Wang EN Nano Lett; 2017 Oct; 17(10):6217-6220. PubMed ID: 28926270 [TBL] [Abstract][Full Text] [Related]
7. Droplet Evaporation on Porous Nanochannels for High Heat Flux Dissipation. Poudel S; Zou A; Maroo SC ACS Appl Mater Interfaces; 2021 Jan; 13(1):1853-1860. PubMed ID: 33371662 [TBL] [Abstract][Full Text] [Related]
8. A heat transfer model for liquid film boiling on micro-structured surfaces. Li P; Zou Q; Liu X; Yang R Natl Sci Rev; 2024 May; 11(5):nwae090. PubMed ID: 38628572 [TBL] [Abstract][Full Text] [Related]
10. Experimental Investigation on Ultra-Thin Vapor Chamber with Composite Wick for Electronics Thermal Management. Zhang S; Huang H; Bai J; Yan C; Qiu H; Tang Y; Luo F Micromachines (Basel); 2024 May; 15(5):. PubMed ID: 38793200 [TBL] [Abstract][Full Text] [Related]
11. Superior Heat and Mass Transfer Performance of Bionic Wick with Finger-like Pores Inspired by the Stomatal Array of Natural Leaf. Xu K; Long L; Chen C; Ye H Langmuir; 2024 May; 40(19):10129-10142. PubMed ID: 38700156 [TBL] [Abstract][Full Text] [Related]
12. Prediction and Characterization of Dry-out Heat Flux in Micropillar Wick Structures. Zhu Y; Antao DS; Lu Z; Somasundaram S; Zhang T; Wang EN Langmuir; 2016 Feb; 32(7):1920-7. PubMed ID: 26808963 [TBL] [Abstract][Full Text] [Related]
13. Nanoengineering-Enhanced Capillary Cooling Achieves Sustained Thermal Protection for Ultra-High Heat Flux and Temperature. Xu R; Zhou J; Liao Z; Li X; Hu H; Hu K; Jiang P Adv Mater; 2024 Jun; ():e2312765. PubMed ID: 38879784 [TBL] [Abstract][Full Text] [Related]
14. Experimental study on the thermal performance of ultra-thin flat heat pipes with novel multiscale striped composite wick structures. Wang M; Yang Y; Sun Y; Li J; Hao M Heliyon; 2023 Oct; 9(10):e20840. PubMed ID: 37867792 [TBL] [Abstract][Full Text] [Related]
15. Unified Modeling Framework for Thin-Film Evaporation from Micropillar Arrays Capturing Local Interfacial Effects. Wang R; Jakhar K; Antao DS Langmuir; 2019 Oct; 35(40):12927-12935. PubMed ID: 31525296 [TBL] [Abstract][Full Text] [Related]
16. Nanostructure-Supported Evaporation Underneath a Growing Bubble. Ridwan S; McCarthy M ACS Appl Mater Interfaces; 2019 Apr; 11(13):12441-12451. PubMed ID: 30758183 [TBL] [Abstract][Full Text] [Related]
17. Dynamic Evolution of the Evaporating Liquid-Vapor Interface in Micropillar Arrays. Antao DS; Adera S; Zhu Y; Farias E; Raj R; Wang EN Langmuir; 2016 Jan; 32(2):519-26. PubMed ID: 26684395 [TBL] [Abstract][Full Text] [Related]
18. Superspreading Surface with Hierarchical Porous Structure for Highly Efficient Vapor-Liquid Phase Change Heat Dissipation. Liu L; Fu C; Li S; Zhu L; Ma F; Zeng Z; Wang G Small; 2024 Jul; ():e2403040. PubMed ID: 38984759 [TBL] [Abstract][Full Text] [Related]
19. A unified relationship for evaporation kinetics at low Mach numbers. Lu Z; Kinefuchi I; Wilke KL; Vaartstra G; Wang EN Nat Commun; 2019 May; 10(1):2368. PubMed ID: 31147534 [TBL] [Abstract][Full Text] [Related]
20. Multiobjective Optimization of Graded, Hybrid Micropillar Wicks for Capillary-Fed Evaporation. Liu T; Asheghi M; Goodson KE Langmuir; 2022 Jan; 38(1):221-230. PubMed ID: 34967627 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]