These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 31057901)
1. 2.5-Dimensional Parylene C micropore array with a large area and a high porosity for high-throughput particle and cell separation. Liu Y; Xu H; Dai W; Li H; Wang W Microsyst Nanoeng; 2018; 4():13. PubMed ID: 31057901 [TBL] [Abstract][Full Text] [Related]
2. Microfabrication of Micropore Array for Cell Separation and Cell Assay. Liu Y; Xu H; Zhang L; Wang W Micromachines (Basel); 2018 Nov; 9(12):. PubMed ID: 30477222 [TBL] [Abstract][Full Text] [Related]
3. A high-throughput liquid biopsy for rapid rare cell separation from large-volume samples. Liu Y; Li T; Xu M; Zhang W; Xiong Y; Nie L; Wang Q; Li H; Wang W Lab Chip; 2018 Dec; 19(1):68-78. PubMed ID: 30516210 [TBL] [Abstract][Full Text] [Related]
4. 1.9 μm superficially porous packing material with radially oriented pores and tailored pore size for ultra-fast separation of small molecules and biomolecules. Min Y; Jiang B; Wu C; Xia S; Zhang X; Liang Z; Zhang L; Zhang Y J Chromatogr A; 2014 Aug; 1356():148-56. PubMed ID: 24999068 [TBL] [Abstract][Full Text] [Related]
5. On reactive Ion Etching of Parylene-C with Simple Photoresist Mask for Fabrication of High Porosity Membranes to Capture Circulating and Exfoliated Tumor Cells. Rabadi I; Carpentieri D; Wang J; Zenhausern F; Gu J Micromachines (Basel); 2024 Apr; 15(4):. PubMed ID: 38675332 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of large-area polymer microfilter membranes and their application for particle and cell enrichment. Hernández-Castro JA; Li K; Meunier A; Juncker D; Veres T Lab Chip; 2017 May; 17(11):1960-1969. PubMed ID: 28443860 [TBL] [Abstract][Full Text] [Related]
7. Selective, user-friendly, highly porous, efficient, and rapid (SUPER) filter for isolation and analysis of rare tumor cells. Zhao K; Liu Y; Wang H; Song Y; Chen X; Huang C; Niu Q; Cao J; Chen X; Wang W; Wu L; Yang C Lab Chip; 2022 Jan; 22(2):367-376. PubMed ID: 34918732 [TBL] [Abstract][Full Text] [Related]
8. Two-level submicron high porosity membranes (2LHPM) for the capture and release of white blood cells (WBCs). Hernández-Castro JA; Li K; Daoud J; Juncker D; Veres T Lab Chip; 2019 Feb; 19(4):589-597. PubMed ID: 30648711 [TBL] [Abstract][Full Text] [Related]
9. Pore space extraction and characterization of sack paper using μ-CT. Machado Charry E; Neumann M; Lahti J; Schennach R; Schmidt V; Zojer K J Microsc; 2018 Oct; 272(1):35-46. PubMed ID: 29984831 [TBL] [Abstract][Full Text] [Related]
10. Microtechnology-enabled filtration-based liquid biopsy: challenges and practical considerations. Liu Y; Xu H; Li T; Wang W Lab Chip; 2021 Mar; 21(6):994-1015. PubMed ID: 33710188 [TBL] [Abstract][Full Text] [Related]
11. PerFlexMEA: a thin microporous microelectrode array for in vitro cardiac electrophysiological studies on hetero-cellular bilayers with controlled gap junction communication. Mondal A; Baker B; Harvey IR; Moreno AP Lab Chip; 2015 May; 15(9):2037-48. PubMed ID: 25797476 [TBL] [Abstract][Full Text] [Related]
12. High-throughput single-particle detections using a dual-height-channel-integrated pore. Tonomura W; Tsutsui M; Arima A; Yokota K; Taniguchi M; Washio T; Kawai T Lab Chip; 2019 Apr; 19(8):1352-1358. PubMed ID: 30907393 [TBL] [Abstract][Full Text] [Related]
13. Clog-free cell filtration using resettable cell traps. Beattie W; Qin X; Wang L; Ma H Lab Chip; 2014 Aug; 14(15):2657-65. PubMed ID: 24710608 [TBL] [Abstract][Full Text] [Related]
14. From the teapot effect to tap-triggered self-wetting: a 3D self-driving sieve for whole blood filtration. Li Y; Li X; Zhang L; Luan X; Jiang J; Zhang L; Li M; Wang J; Duan J; Zhao H; Zhao Y; Huang C Microsyst Nanoeng; 2023; 9():30. PubMed ID: 36960347 [TBL] [Abstract][Full Text] [Related]
15. [Determination of beryllium in atmospheric particulate by graphite furnace atomic absorption spectrophotometer using aluminium as a matrix modifier agent sampling with micropore filter membrane]. Wang Z; Zhu W; Lu Y Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Aug; 21(4):545-7. PubMed ID: 12945289 [TBL] [Abstract][Full Text] [Related]
16. An electrochemical and high-speed imaging study of micropore decontamination by acoustic bubble entrapment. Offin DG; Birkin PR; Leighton TG Phys Chem Chem Phys; 2014 Mar; 16(10):4982-9. PubMed ID: 24477554 [TBL] [Abstract][Full Text] [Related]
17. Asymmetric Aerogel Membranes with Ultrafast Water Permeation for the Separation of Oil-in-Water Emulsion. Liu Y; Su Y; Guan J; Cao J; Zhang R; He M; Jiang Z ACS Appl Mater Interfaces; 2018 Aug; 10(31):26546-26554. PubMed ID: 30024725 [TBL] [Abstract][Full Text] [Related]
18. High-flux ceramic membranes with a nanomesh of metal oxide nanofibers. Ke XB; Zheng ZF; Liu HW; Zhu HY; Gao XP; Zhang LX; Xu NP; Wang H; Zhao HJ; Shi J; Ratinac KR J Phys Chem B; 2008 Apr; 112(16):5000-6. PubMed ID: 18386864 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of the Effect of the Volume Throughput and Maximum Flux of Low-Surface-Tension Fluids on Bacterial Penetration of 0.2 Micron-Rated Filters during Process-Specific Filter Validation Testing. Folmsbee M PDA J Pharm Sci Technol; 2015; 69(2):307-16. PubMed ID: 25868996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]