These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31057933)

  • 1. Towards a versatile point-of-care system combining femtosecond laser generated microfluidic channels and direct laser written microneedle arrays.
    Trautmann A; Roth GL; Nujiqi B; Walther T; Hellmann R
    Microsyst Nanoeng; 2019; 5():6. PubMed ID: 31057933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Femtosecond laser direct generation of 3D-microfluidic channels inside bulk PMMA.
    Roth GL; Esen C; Hellmann R
    Opt Express; 2017 Jul; 25(15):18442-18450. PubMed ID: 28789329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfabrication of polymer microneedle arrays using two-photon polymerization.
    Mckee S; Lutey A; Sciancalepore C; Poli F; Selleri S; Cucinotta A
    J Photochem Photobiol B; 2022 Apr; 229():112424. PubMed ID: 35276580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-fidelity replication of thermoplastic microneedles with open microfluidic channels.
    Faraji Rad Z; Nordon RE; Anthony CJ; Bilston L; Prewett PD; Arns JY; Arns CH; Zhang L; Davies GJ
    Microsyst Nanoeng; 2017; 3():17034. PubMed ID: 31057872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-photon polymerization of microneedles for transdermal drug delivery.
    Gittard SD; Ovsianikov A; Chichkov BN; Doraiswamy A; Narayan RJ
    Expert Opin Drug Deliv; 2010 Apr; 7(4):513-33. PubMed ID: 20205601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An overview of microneedle applications, materials, and fabrication methods.
    Faraji Rad Z; Prewett PD; Davies GJ
    Beilstein J Nanotechnol; 2021; 12():1034-1046. PubMed ID: 34621614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass.
    Sugioka K; Xu J; Wu D; Hanada Y; Wang Z; Cheng Y; Midorikawa K
    Lab Chip; 2014 Sep; 14(18):3447-58. PubMed ID: 25012238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution two-photon polymerization: the most versatile technique for the fabrication of microneedle arrays.
    Faraji Rad Z; Prewett PD; Davies GJ
    Microsyst Nanoeng; 2021; 7():71. PubMed ID: 34567783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of embedded microball lens in PMMA with high repetition rate femtosecond fiber laser.
    Zheng C; Hu A; Li R; Bridges D; Chen T
    Opt Express; 2015 Jun; 23(13):17584-98. PubMed ID: 26191766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Femtosecond laser hybrid fabrication of a 3D microfluidic chip for PCR application.
    Shan C; Zhang C; Liang J; Yang Q; Bian H; Yong J; Hou X; Chen F
    Opt Express; 2020 Aug; 28(18):25716-25722. PubMed ID: 32906856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels.
    Zhang C; Hu Y; Du W; Wu P; Rao S; Cai Z; Lao Z; Xu B; Ni J; Li J; Zhao G; Wu D; Chu J; Sugioka K
    Sci Rep; 2016 Sep; 6():33281. PubMed ID: 27619690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bonding Strength of a Glass Microfluidic Device Fabricated by Femtosecond Laser Micromachining and Direct Welding.
    Kim S; Kim J; Joung YH; Choi J; Koo C
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30513880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-photon polymerization based reusable master template to fabricate polymer microneedles for drug delivery.
    Pillai MM; Ajesh S; Tayalia P
    MethodsX; 2023; 10():102025. PubMed ID: 36793674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CO
    Yao Y; Fan Y
    Biomed Microdevices; 2021 Sep; 23(4):47. PubMed ID: 34550472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 3D-printed microfluidic-enabled hollow microneedle architecture for transdermal drug delivery.
    Yeung C; Chen S; King B; Lin H; King K; Akhtar F; Diaz G; Wang B; Zhu J; Sun W; Khademhosseini A; Emaminejad S
    Biomicrofluidics; 2019 Nov; 13(6):064125. PubMed ID: 31832123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic Channels Fabrication Based on Underwater Superpolymphobic Microgrooves Produced by Femtosecond Laser Direct Writing.
    Yong J; Zhan Z; Singh SC; Chen F; Guo C
    ACS Appl Polym Mater; 2019; 1(11):2819-2825. PubMed ID: 33283193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic chip to interface porous microneedles for ISF collection.
    Takeuchi K; Takama N; Kim B; Sharma K; Paul O; Ruther P
    Biomed Microdevices; 2019 Mar; 21(1):28. PubMed ID: 30847695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-low-cost fabrication of polymer-based microfluidic devices with diode laser ablation.
    Gao K; Liu J; Fan Y; Zhang Y
    Biomed Microdevices; 2019 Aug; 21(4):83. PubMed ID: 31418064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scalable fabrication of microneedle arrays via spatially controlled UV exposure.
    Takahashi H; Jung Heo Y; Arakawa N; Kan T; Matsumoto K; Kawano R; Shimoyama I
    Microsyst Nanoeng; 2016; 2():16049. PubMed ID: 31057837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of High-Density Out-of-Plane Microneedle Arrays with Various Heights and Diverse Cross-Sectional Shapes.
    Roh H; Yoon YJ; Park JS; Kang DH; Kwak SM; Lee BC; Im M
    Nanomicro Lett; 2021 Dec; 14(1):24. PubMed ID: 34888758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.