These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31057933)

  • 21. Innovative Fabrication of Hollow Microneedle Arrays Enabling Blood Sampling with a Self-Powered Microfluidic Patch.
    Van Hileghem L; Kushwaha S; Piovesan A; Verboven P; Nicolaï B; Reynaerts D; Dal Dosso F; Lammertyn J
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985022
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A simple method of microneedle array fabrication for transdermal drug delivery.
    Kochhar JS; Goh WJ; Chan SY; Kang L
    Drug Dev Ind Pharm; 2013 Feb; 39(2):299-309. PubMed ID: 22519721
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel microneedle array for the treatment of hydrocephalus.
    Oh J; Liu K; Medina T; Kralick F; Noh HM
    Microsyst Technol; 2014 Jun; 20(6):1169-1179. PubMed ID: 25013306
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent Advances in Microneedle Platforms for Transdermal Drug Delivery Technologies.
    Mdanda S; Ubanako P; Kondiah PPD; Kumar P; Choonara YE
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372008
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Capillary flow in microchannel circuitry of scleral lenses.
    Yetisen AK; Soylemezoglu B; Dong J; Montelongo Y; Butt H; Jakobi M; Koch AW
    RSC Adv; 2019 Apr; 9(20):11186-11193. PubMed ID: 35520217
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An optimized hollow microneedle for minimally invasive blood extraction.
    Li CG; Lee CY; Lee K; Jung H
    Biomed Microdevices; 2013 Feb; 15(1):17-25. PubMed ID: 22833155
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass.
    He F; Liao Y; Lin J; Song J; Qiao L; Cheng Y; Sugioka K
    Sensors (Basel); 2014 Oct; 14(10):19402-40. PubMed ID: 25330047
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication, Physicochemical Characterization, and Performance Evaluation of Biodegradable Polymeric Microneedle Patch System for Enhanced Transcutaneous Flux of High Molecular Weight Therapeutics.
    Shah V; Choudhury BK
    AAPS PharmSciTech; 2017 Nov; 18(8):2936-2948. PubMed ID: 28432615
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glassy carbon microneedles-new transdermal drug delivery device derived from a scalable C-MEMS process.
    Mishra R; Pramanick B; Maiti TK; Bhattacharyya TK
    Microsyst Nanoeng; 2018; 4():38. PubMed ID: 31057926
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatially controlled coating of continuous liquid interface production microneedles for transdermal protein delivery.
    Caudill CL; Perry JL; Tian S; Luft JC; DeSimone JM
    J Control Release; 2018 Aug; 284():122-132. PubMed ID: 29894710
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bonding of PMMA to silicon by femtosecond laser pulses.
    Capodacqua FMC; Volpe A; Gaudiuso C; Ancona A
    Sci Rep; 2023 Mar; 13(1):5062. PubMed ID: 36977765
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Drawing lithography for microneedles: a review of fundamentals and biomedical applications.
    Lee K; Jung H
    Biomaterials; 2012 Oct; 33(30):7309-26. PubMed ID: 22831855
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrated optofluidic-microfluidic twin channels: toward diverse application of lab-on-a-chip systems.
    Lv C; Xia H; Guan W; Sun YL; Tian ZN; Jiang T; Wang YS; Zhang YL; Chen QD; Ariga K; Yu YD; Sun HB
    Sci Rep; 2016 Jan; 6():19801. PubMed ID: 26823292
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design, fabrication and analysis of silicon hollow microneedles for transdermal drug delivery system for treatment of hemodynamic dysfunctions.
    Ashraf MW; Tayyaba S; Nisar A; Afzulpurkar N; Bodhale DW; Lomas T; Poyai A; Tuantranont A
    Cardiovasc Eng; 2010 Sep; 10(3):91-108. PubMed ID: 20730492
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microneedles as an alternative technology for transdermal drug delivery systems: a patent review.
    Queiroz MLB; Shanmugam S; Santos LNS; Campos CA; Santos AM; Batista MS; Araújo AAS; Serafini MR
    Expert Opin Ther Pat; 2020 Jun; 30(6):433-452. PubMed ID: 32164470
    [No Abstract]   [Full Text] [Related]  

  • 36. Mechanism for spherical dome and microvoid formation in polycarbonate using nanojoule femtosecond laser pulses.
    Meunier T; Villafranca AB; Bhardwaj R; Weck A
    Opt Lett; 2012 Aug; 37(15):3168-70. PubMed ID: 22859121
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two Photon Polymerization-Micromolding of Polyethylene Glycol-Gentamicin Sulfate Microneedles.
    Gittard SD; Ovsianikov A; Akar H; Chichkov B; Monteiro-Riviere NA; Stafslien S; Chisholm B; Shin CC; Shih CM; Lin SJ; Su YY; Narayan RJ
    Adv Eng Mater; 2010 Apr; 12(4):B77-B82. PubMed ID: 21037972
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Femtosecond laser microstructuring for polymeric lab-on-chips.
    Eaton SM; De Marco C; Martinez-Vazquez R; Ramponi R; Turri S; Cerullo G; Osellame R
    J Biophotonics; 2012 Aug; 5(8-9):687-702. PubMed ID: 22589025
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing.
    Krieger KJ; Bertollo N; Dangol M; Sheridan JT; Lowery MM; O'Cearbhaill ED
    Microsyst Nanoeng; 2019; 5():42. PubMed ID: 31645996
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of Silicon Microfluidic Chips for Acoustic Particle Focusing Using Direct Laser Writing.
    Fornell A; Söderbäck P; Liu Z; De Albuquerque Moreira M; Tenje M
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 31972982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.