These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31057939)

  • 1. Scalable fabrication of sub-10 nm polymer nanopores for DNA analysis.
    Choi J; Lee CC; Park S
    Microsyst Nanoeng; 2019; 5():12. PubMed ID: 31057939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast and Deterministic Fabrication of Sub-5 Nanometer Solid-State Pores by Feedback-Controlled Laser Processing.
    Zvuloni E; Zrehen A; Gilboa T; Meller A
    ACS Nano; 2021 Jul; 15(7):12189-12200. PubMed ID: 34219449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of perforated micro/nanopore membranes via a combination of nanoimprint lithography and pressed self-perfection process for size reduction.
    Choi J; Farshchian B; Kim J; Park S
    J Nanosci Nanotechnol; 2013 Jun; 13(6):4129-33. PubMed ID: 23862460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pore-size reduction protocol for SiN membrane nanopore using the thermal reflow in nanoimprinting for nanobio-based sensing.
    Lee DS; Song HW; Choi CG; Jung MY
    J Biomed Opt; 2014 May; 19(5):051211. PubMed ID: 24503699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing.
    Ayub M; Ivanov A; Hong J; Kuhn P; Instuli E; Edel JB; Albrecht T
    J Phys Condens Matter; 2010 Nov; 22(45):454128. PubMed ID: 21339614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of nanopores in a silicon membrane: self-limiting formation of sub-10 nm circular openings.
    Zhang M; Schmidt T; Sangghaleh F; Roxhed N; Sychugov I; Linnros J
    Nanotechnology; 2014 Sep; 25(35):355302. PubMed ID: 25116147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lithography-based fabrication of nanopore arrays in freestanding SiN and graphene membranes.
    Verschueren DV; Yang W; Dekker C
    Nanotechnology; 2018 Apr; 29(14):145302. PubMed ID: 29384130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication.
    Schmidt T; Zhang M; Sychugov I; Roxhed N; Linnros J
    Nanotechnology; 2015 Aug; 26(31):314001. PubMed ID: 26180043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of polymeric dual-scale nanoimprint molds using a polymer stencil membrane.
    Choi J; Jia Z; Park S
    Microelectron Eng; 2018 Nov; 199():101-105. PubMed ID: 31011235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailoring Thermoplastic In-Plane Nanopore Size by Thermal Fusion Bonding for the Analysis of Single Molecules.
    Athapattu US; Rathnayaka C; Vaidyanathan S; Gamage SST; Choi J; Riahipour R; Manoharan A; Hall AR; Park S; Soper SA
    ACS Sens; 2021 Aug; 6(8):3133-3143. PubMed ID: 34406743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of sub-20 nm nanopore arrays in membranes with embedded metal electrodes at wafer scales.
    Bai J; Wang D; Nam SW; Peng H; Bruce R; Gignac L; Brink M; Kratschmer E; Rossnagel S; Waggoner P; Reuter K; Wang C; Astier Y; Balagurusamy V; Luan B; Kwark Y; Joseph E; Guillorn M; Polonsky S; Royyuru A; Papa Rao S; Stolovitzky G
    Nanoscale; 2014 Aug; 6(15):8900-6. PubMed ID: 24964839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated fabrication of 2-nm solid-state nanopores for nucleic acid analysis.
    Briggs K; Kwok H; Tabard-Cossa V
    Small; 2014 May; 10(10):2077-86. PubMed ID: 24585682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controllable Fabrication of Sub-10 nm Graphene Nanopores via Helium Ion Microscopy and DNA Detection.
    Yuan Z; Lin Y; Hu J; Wang C
    Biosensors (Basel); 2024 Mar; 14(4):. PubMed ID: 38667151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable fabrication of nanopores in membranes via thermal annealing of Au nanoparticles.
    Park T; Lee SJ; Cha JH; Choi W
    Nanoscale; 2018 Dec; 10(47):22623-22634. PubMed ID: 30484792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical Reaction in Single Layer MoS2: Nanopores Opened Atom by Atom.
    Feng J; Liu K; Graf M; Lihter M; Bulushev RD; Dumcenco D; Alexander DT; Krasnozhon D; Vuletic T; Kis A; Radenovic A
    Nano Lett; 2015 May; 15(5):3431-8. PubMed ID: 25928894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanopore fabrication by controlled dielectric breakdown.
    Kwok H; Briggs K; Tabard-Cossa V
    PLoS One; 2014; 9(3):e92880. PubMed ID: 24658537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sub-10-nm-thick SiN nanopore membranes fabricated using the SiO
    Yanagi I; Takeda KI
    Nanotechnology; 2021 Jul; 32(41):. PubMed ID: 34214991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controllable Shrinking of Glass Capillary Nanopores Down to sub-10 nm by Wet-Chemical Silanization for Signal-Enhanced DNA Translocation.
    Xu X; Li C; Zhou Y; Jin Y
    ACS Sens; 2017 Oct; 2(10):1452-1457. PubMed ID: 28971672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast Fabrication Nanopores on a PMMA Membrane by a Local High Electric Field Controlled Breakdown.
    Fang S; Zeng D; He S; Li Y; Pang Z; Wang Y; Liang L; Weng T; Xie W; Wang D
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrathin, High-Lifetime Silicon Nitride Membranes for Nanopore Sensing.
    Dutt S; Karawdeniya BI; Bandara YMNDY; Afrin N; Kluth P
    Anal Chem; 2023 Apr; 95(13):5754-5763. PubMed ID: 36930050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.