These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31058166)

  • 21. Distinct Crystalline Aromatic Structural Motifs: Identification, Classification, and Implications.
    Ramakrishnan R; Niyas MA; Lijina MP; Hariharan M
    Acc Chem Res; 2019 Nov; 52(11):3075-3086. PubMed ID: 31449389
    [TBL] [Abstract][Full Text] [Related]  

  • 22. IncMD: incremental trie-based structural motif discovery algorithm.
    Badr G; Al-Turaiki I; Turcotte M; Mathkour H
    J Bioinform Comput Biol; 2014 Oct; 12(5):1450027. PubMed ID: 25362841
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Construction of Stimuli-Responsive Functional Materials via Hierarchical Self-Assembly Involving Coordination Interactions.
    Chen LJ; Yang HB
    Acc Chem Res; 2018 Nov; 51(11):2699-2710. PubMed ID: 30285407
    [TBL] [Abstract][Full Text] [Related]  

  • 24. GXXXG and AXXXA: common alpha-helical interaction motifs in proteins, particularly in extremophiles.
    Kleiger G; Grothe R; Mallick P; Eisenberg D
    Biochemistry; 2002 May; 41(19):5990-7. PubMed ID: 11993993
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deciphering complex metabolite mixtures by unsupervised and supervised substructure discovery and semi-automated annotation from MS/MS spectra.
    Rogers S; Ong CW; Wandy J; Ernst M; Ridder L; van der Hooft JJJ
    Faraday Discuss; 2019 Aug; 218(0):284-302. PubMed ID: 31120050
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gaussian representation for image recognition and reinforcement learning of atomistic structure.
    Christiansen MV; Mortensen HL; Meldgaard SA; Hammer B
    J Chem Phys; 2020 Jul; 153(4):044107. PubMed ID: 32752658
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rediscovering secondary structures as network motifs--an unsupervised learning approach.
    Raveh B; Rahat O; Basri R; Schreiber G
    Bioinformatics; 2007 Jan; 23(2):e163-9. PubMed ID: 17237086
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of structural motifs from protein coordinate data: secondary structure and first-level supersecondary structure.
    Richards FM; Kundrot CE
    Proteins; 1988; 3(2):71-84. PubMed ID: 3399495
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conserved binding of GCAC motifs by MEC-8, couch potato, and the RBPMS protein family.
    Soufari H; Mackereth CD
    RNA; 2017 Mar; 23(3):308-316. PubMed ID: 28003515
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Patterns and conformations of commonly occurring supersecondary structures (basic motifs) in protein data bank.
    Sun Z; Jiang B
    J Protein Chem; 1996 Oct; 15(7):675-90. PubMed ID: 8968959
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A data-driven interpretation of the stability of organic molecular crystals.
    Cersonsky RK; Pakhnova M; Engel EA; Ceriotti M
    Chem Sci; 2023 Feb; 14(5):1272-1285. PubMed ID: 36756329
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The fragment transformation method to detect the protein structural motifs.
    Lu CH; Lin YS; Chen YC; Yu CS; Chang SY; Hwang JK
    Proteins; 2006 May; 63(3):636-43. PubMed ID: 16470805
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Supervised classification of protein structures based on convex hull representation.
    Wang Y; Wu LY; Chen L; Zhang XS
    Int J Bioinform Res Appl; 2007; 3(2):123-44. PubMed ID: 18048184
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimal radial basis for density-based atomic representations.
    Goscinski A; Musil F; Pozdnyakov S; Nigam J; Ceriotti M
    J Chem Phys; 2021 Sep; 155(10):104106. PubMed ID: 34525832
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A 3D sequence-independent representation of the protein data bank.
    Fischer D; Tsai CJ; Nussinov R; Wolfson H
    Protein Eng; 1995 Oct; 8(10):981-97. PubMed ID: 8771179
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The RNA 3D Motif Atlas: Computational methods for extraction, organization and evaluation of RNA motifs.
    Parlea LG; Sweeney BA; Hosseini-Asanjan M; Zirbel CL; Leontis NB
    Methods; 2016 Jul; 103():99-119. PubMed ID: 27125735
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient detection of three-dimensional structural motifs in biological macromolecules by computer vision techniques.
    Nussinov R; Wolfson HJ
    Proc Natl Acad Sci U S A; 1991 Dec; 88(23):10495-9. PubMed ID: 1961713
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Learning structural motif representations for efficient protein structure search.
    Liu Y; Ye Q; Wang L; Peng J
    Bioinformatics; 2018 Sep; 34(17):i773-i780. PubMed ID: 30423083
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identifying and Tracking Defects in Dynamic Supramolecular Polymers.
    Gasparotto P; Bochicchio D; Ceriotti M; Pavan GM
    J Phys Chem B; 2020 Jan; 124(3):589-599. PubMed ID: 31888337
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Atom-density representations for machine learning.
    Willatt MJ; Musil F; Ceriotti M
    J Chem Phys; 2019 Apr; 150(15):154110. PubMed ID: 31005079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.