These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 31058269)

  • 1. Indoor Localization using Computer Vision and Visual-Inertial Odometry.
    Fusco G; Coughlan JM
    Comput Help People Spec Needs; 2018 Jul; 10897():86-93. PubMed ID: 31058269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Indoor Navigation App using Computer Vision and Sign Recognition.
    Fusco G; Cheraghi SA; Neat L; Coughlan JM
    Comput Help People Spec Needs; 2020 Sep; 12376():485-494. PubMed ID: 33263114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indoor Localization for Visually Impaired Travelers Using Computer Vision on a Smartphone.
    Fusco G; Coughlan JM
    Proc 17th Int Web All Conf (2020); 2020 Apr; 2020():. PubMed ID: 33163996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards a Sign-Based Indoor Navigation System for People with Visual Impairments.
    Rituerto A; Fusco G; Coughlan JM
    ASSETS; 2016 Oct; 2016():287-288. PubMed ID: 29214242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-Time Sign Detection for Accessible Indoor Navigation.
    Cheraghi SA; Fusco G; Coughlan JM
    J Technol Pers Disabil; 2021; 9():125-139. PubMed ID: 34350305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Lightweight Approach to Localization for Blind and Visually Impaired Travelers.
    Crabb R; Cheraghi SA; Coughlan JM
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indoor Localization Based on VIO System and Three-Dimensional Map Matching.
    Zhang J; Ren M; Wang P; Meng J; Mu Y
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32422992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smartphone-Based Inertial Odometry for Blind Walkers.
    Ren P; Elyasi F; Manduchi R
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34208112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity Recognition and Semantic Description for Indoor Mobile Localization.
    Guo S; Xiong H; Zheng X; Zhou Y
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28335555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning-Based Positioning of Visually Impaired People in Indoor Environments.
    Mahida P; Shahrestani S; Cheung H
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33142927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FUNCTIONAL ASSESSMENT OF A CAMERA PHONE-BASED WAYFINDING SYSTEM OPERATED BY BLIND AND VISUALLY IMPAIRED USERS.
    Coughlan J; Manduchi R
    Int J Artif Intell Tools; 2009 Jun; 18(3):379-397. PubMed ID: 19960101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pedestrian Dead Reckoning-Assisted Visual Inertial Odometry Integrity Monitoring.
    Wang Y; Peng A; Lin Z; Zheng L; Zheng H
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31861161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Deep Learning Approach to 5G CSI/Geomagnetism/VIO Fused Indoor Localization.
    Yang C; Cheng Z; Jia X; Zhang L; Li L; Zhao D
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fusion localization for indoor airplane inspection using visual inertial odometry and ultrasonic RTLS.
    Park I; Cho S
    Sci Rep; 2023 Oct; 13(1):18117. PubMed ID: 37872183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indoor navigation by people with visual impairment using a digital sign system.
    Legge GE; Beckmann PJ; Tjan BS; Havey G; Kramer K; Rolkosky D; Gage R; Chen M; Puchakayala S; Rangarajan A
    PLoS One; 2013; 8(10):e76783. PubMed ID: 24116156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UNav: An Infrastructure-Independent Vision-Based Navigation System for People with Blindness and Low Vision.
    Yang A; Beheshti M; Hudson TE; Vedanthan R; Riewpaiboon W; Mongkolwat P; Feng C; Rizzo JR
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Robust Indoor/Outdoor Navigation Filter Fusing Data from Vision and Magneto-Inertial Measurement Unit.
    Caruso D; Eudes A; Sanfourche M; Vissière D; Besnerais GL
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29207537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PL-VIO: Tightly-Coupled Monocular Visual-Inertial Odometry Using Point and Line Features.
    He Y; Zhao J; Guo Y; He W; Yuan K
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29642648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of computer-vision and BLE technology based indoor navigation systems for people with visual impairments.
    Kunhoth J; Karkar A; Al-Maadeed S; Al-Attiyah A
    Int J Health Geogr; 2019 Dec; 18(1):29. PubMed ID: 31829212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experiments with RouteNav, A Wayfinding App for Blind Travelers in a Transit Hub.
    Ren P; Lam J; Manduchi R; Mirzaei F
    ASSETS; 2023 Oct; 2023():. PubMed ID: 38045532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.