These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 31058388)

  • 1. A One-Pot Polymerization for Concurrently Inducing Predominant Helicity in Optically Inactive Helical Polymer and Constructing Graphene-Based Chiral Hybrid Foams.
    Li P; Ma Z; Mei S; Pan K; Deng J
    Macromol Rapid Commun; 2019 Jul; 40(13):e1900146. PubMed ID: 31058388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chiral monolithic absorbent constructed by optically active helical-substituted polyacetylene and graphene oxide: preparation and chiral absorption capacity.
    Li W; Wang B; Yang W; Deng J
    Macromol Rapid Commun; 2015 Feb; 36(3):319-26. PubMed ID: 25490977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Helix-Sense-Selective Polymerization of Achiral Monomers for the Preparation of Chiral Helical Polyacetylenes Showing Intense CPL in Solid Film State.
    Yang K; Ma S; Zhang Y; Zhao B; Deng J
    Macromol Rapid Commun; 2022 Jun; 43(11):e2200111. PubMed ID: 35429085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispersion Polymerization of Substituted Acetylenes in the Presence of Chiral Source for Preparing Monodispersed Chiral Nanoparticles.
    Zhao B; Deng J
    Macromol Rapid Commun; 2018 Apr; 39(7):e1700759. PubMed ID: 29399961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene Oxide (GO) as Stabilizer for Preparing Chirally Helical Polyacetylene/GO Hybrid Microspheres via Suspension Polymerization.
    Li J; Deng J; Li W; Pan K; Deng J
    Macromol Rapid Commun; 2017 Nov; 38(21):. PubMed ID: 28921736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Helix-sense-selective co-precipitation for preparing optically active helical polymer nanoparticles/graphene oxide hybrid nanocomposites.
    Huang H; Li W; Shi Y; Deng J
    Nanoscale; 2017 May; 9(20):6877-6885. PubMed ID: 28498380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Helix-Induced Asymmetric Self-Assembly of π-Conjugated Block Copolymers: From Controlled Syntheses to Distinct Properties.
    Liu N; Gao RT; Wu ZQ
    Acc Chem Res; 2023 Nov; 56(21):2954-2967. PubMed ID: 37852202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optically Active Helical Polyacetylene Self-Assembled into Chiral Micelles Used As Nanoreactor for Helix-Sense-Selective Polymerization.
    Zhao B; Deng J; Deng J
    ACS Macro Lett; 2017 Jan; 6(1):6-10. PubMed ID: 35632871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The first suspension polymerization for preparing optically active microparticles purely constructed from chirally helical substituted polyacetylenes.
    Zhang H; Song J; Deng J
    Macromol Rapid Commun; 2014 Jul; 35(13):1216-23. PubMed ID: 24715681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereoselective Helix-Sense-Selective Cationic Polymerization of
    Sorensen CC; Leibfarth FA
    J Am Chem Soc; 2022 May; 144(19):8487-8492. PubMed ID: 35510915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optically Active Janus Particles Constructed by Chiral Helical Polymers through Emulsion Polymerization Combined with Solvent Evaporation-Induced Phase Separation.
    Zhang Y; Kang L; Huang H; Deng J
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6319-6327. PubMed ID: 31939279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alkyne-Palladium(II)-Catalyzed Living Polymerization of Isocyanides: An Exploration of Diverse Structures and Functions.
    Liu N; Zhou L; Wu ZQ
    Acc Chem Res; 2021 Oct; 54(20):3953-3967. PubMed ID: 34601864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chiral Monomers Ensure Orientational Specificity of Monomer Binding During Polymer Self-Replication.
    Subramanian H; Gatenby RA
    J Mol Evol; 2018 Jun; 86(5):255-263. PubMed ID: 29725703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noncovalent chiral functionalization of graphene with optically active helical polymers.
    Ren C; Chen Y; Zhang H; Deng J
    Macromol Rapid Commun; 2013 Sep; 34(17):1368-74. PubMed ID: 23852622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optically active particles of chiral polymers.
    Song C; Liu X; Liu D; Ren C; Yang W; Deng J
    Macromol Rapid Commun; 2013 Sep; 34(18):1426-45. PubMed ID: 24030962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chiral Self-Assembly of Nanoparticles Induced by Polymers Synthesized via Reversible Addition-Fragmentation Chain Transfer Polymerization.
    Cheng G; Xu D; Lu Z; Liu K
    ACS Nano; 2019 Feb; 13(2):1479-1489. PubMed ID: 30702861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective Synthesis of Single-Handed Helical Polymers from Achiral Monomer and a Mechanism Study on Helix-Sense-Selective Polymerization.
    Zhou L; Xu XH; Jiang ZQ; Xu L; Chu BF; Liu N; Wu ZQ
    Angew Chem Int Ed Engl; 2021 Jan; 60(2):806-812. PubMed ID: 33006185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of Optically Active Helical Polycarbenes through Helix-Sense-Selective Polymerization Strategy and Their Application in Chiral Separation.
    Gao BR; Wu YJ; Xu L; Zou H; Zhou L; Liu N; Wu ZQ
    ACS Macro Lett; 2022 Jun; 11(6):785-791. PubMed ID: 35653295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Helix-Sense-Selective Memory Polymerization of Biphenylylacetylenes Bearing Carboxy and Amino Groups in Water.
    Okuda S; Ikai T; Okutsu H; Ando M; Hattori M; Ishidate R; Yashima E
    Angew Chem Int Ed Engl; 2024 Jul; ():e202412752. PubMed ID: 39043565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chirality responsive helical poly(phenylacetylene) bearing L-proline pendants.
    Kawamura H; Takeyama Y; Yamamoto M; Kurihara H; Morino K; Yashima E
    Chirality; 2011; 23 Suppl 1():E35-42. PubMed ID: 21500288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.