These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

496 related articles for article (PubMed ID: 31058486)

  • 1. Piezoelectric 3-D Fibrous Poly(3-hydroxybutyrate)-Based Scaffolds Ultrasound-Mineralized with Calcium Carbonate for Bone Tissue Engineering: Inorganic Phase Formation, Osteoblast Cell Adhesion, and Proliferation.
    Chernozem RV; Surmeneva MA; Shkarina SN; Loza K; Epple M; Ulbricht M; Cecilia A; Krause B; Baumbach T; Abalymov AA; Parakhonskiy BV; Skirtach AG; Surmenev RA
    ACS Appl Mater Interfaces; 2019 May; 11(21):19522-19533. PubMed ID: 31058486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly porous PHB-based bioactive scaffolds for bone tissue engineering by in situ synthesis of hydroxyapatite.
    Degli Esposti M; Chiellini F; Bondioli F; Morselli D; Fabbri P
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():286-296. PubMed ID: 30948063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison study between electrospun polycaprolactone and piezoelectric poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds for bone tissue engineering.
    Gorodzha SN; Muslimov AR; Syromotina DS; Timin AS; Tcvetkov NY; Lepik KV; Petrova AV; Surmeneva MA; Gorin DA; Sukhorukov GB; Surmenev RA
    Colloids Surf B Biointerfaces; 2017 Dec; 160():48-59. PubMed ID: 28917149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PHBV wet-spun scaffold coated with ELR-REDV improves vascularization for bone tissue engineering.
    Alagoz AS; Rodriguez-Cabello JC; Hasirci V
    Biomed Mater; 2018 Jul; 13(5):055010. PubMed ID: 29974870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Piezoelectric hybrid scaffolds mineralized with calcium carbonate for tissue engineering: Analysis of local enzyme and small-molecule drug delivery, cell response and antibacterial performance.
    Chernozem RV; Surmeneva MA; Abalymov AA; Parakhonskiy BV; Rigole P; Coenye T; Surmenev RA; Skirtach AG
    Mater Sci Eng C Mater Biol Appl; 2021 Mar; 122():111909. PubMed ID: 33641905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation.
    Sultana N; Wang M
    Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of an electrospun composite scaffold of poly (3-hydroxybutyrate)-chitosan/alumina nanowires in bone tissue engineering applications.
    Toloue EB; Karbasi S; Salehi H; Rafienia M
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():1075-1091. PubMed ID: 30889640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospinning and evaluation of PHBV-based tissue engineering scaffolds with different fibre diameters, surface topography and compositions.
    Tong HW; Wang M; Lu WW
    J Biomater Sci Polym Ed; 2012; 23(6):779-806. PubMed ID: 21418747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro mineralization of hydroxyapatite on electrospun poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) fibrous scaffolds for tissue engineering application.
    Fu S; Yang L; Fan J; Wen Q; Lin S; Wang B; Chen L; Meng X; Chen Y; Wu J
    Colloids Surf B Biointerfaces; 2013 Jul; 107():167-73. PubMed ID: 23500727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro neuronal and glial response to magnetically stimulated piezoelectric poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV)/cobalt ferrite (CFO) microspheres.
    Pinho TS; Cibrão JR; Silva D; Barata-Antunes S; Campos J; Afonso JL; Sampaio-Marques B; Ribeiro C; Macedo AS; Martins P; Cunha CB; Lanceros-Mendez S; Salgado AJ
    Biomater Adv; 2024 May; 159():213798. PubMed ID: 38364446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocomposite scaffolds based on electrospun poly(3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications.
    Ramier J; Bouderlique T; Stoilova O; Manolova N; Rashkov I; Langlois V; Renard E; Albanese P; Grande D
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():161-9. PubMed ID: 24656364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zein/Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) electrospun blend fiber scaffolds: Preparation, characterization and cytocompatibility.
    Zhijiang C; Qin Z; Xianyou S; Yuanpei L
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():797-806. PubMed ID: 27987775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diatom shell incorporated PHBV/PCL-pullulan co-electrospun scaffold for bone tissue engineering.
    Dalgic AD; Atila D; Karatas A; Tezcaner A; Keskin D
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():735-746. PubMed ID: 30948111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and characterization of bioactive β-Ca2SiO4/PHBV composite scaffolds.
    Wang N; Zhou Z; Xia L; Dai Y; Liu H
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2294-301. PubMed ID: 23498261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifunctional Scaffolds with Improved Antimicrobial Properties and Osteogenicity Based on Piezoelectric Electrospun Fibers Decorated with Bioactive Composite Microcapsules.
    Timin AS; Muslimov AR; Zyuzin MV; Peltek OO; Karpov TE; Sergeev IS; Dotsenko AI; Goncharenko AA; Yolshin ND; Sinelnik A; Krause B; Baumbach T; Surmeneva MA; Chernozem RV; Sukhorukov GB; Surmenev RA
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):34849-34868. PubMed ID: 30230807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro biocompatibility of schwann cells on surfaces of biocompatible polymeric electrospun fibrous and solution-cast film scaffolds.
    Sangsanoh P; Waleetorncheepsawat S; Suwantong O; Wutticharoenmongkol P; Weeranantanapan O; Chuenjitbuntaworn B; Cheepsunthorn P; Pavasant P; Supaphol P
    Biomacromolecules; 2007 May; 8(5):1587-94. PubMed ID: 17429941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modified PHBV scaffolds by in situ UV polymerization: structural characteristic, mechanical properties and bone mesenchymal stem cell compatibility.
    Ke Y; Wang YJ; Ren L; Zhao QC; Huang W
    Acta Biomater; 2010 Apr; 6(4):1329-36. PubMed ID: 19853067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocomposite scaffolds for bone regeneration: Role of chitosan and hydroxyapatite within poly-3-hydroxybutyrate-co-3-hydroxyvalerate on mechanical properties and in vitro evaluation.
    Zhang S; Prabhakaran MP; Qin X; Ramakrishna S
    J Mech Behav Biomed Mater; 2015 Nov; 51():88-98. PubMed ID: 26232670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering.
    Wang J; Yu X
    Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of electrospun biomimetic substrate surface-decorated with nanohydroxyapatite precipitation for osteoblasts behavior.
    Zhang S; Jiang G; Prabhakaran MP; Qin X; Ramakrishna S
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():687-696. PubMed ID: 28629069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.