BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

652 related articles for article (PubMed ID: 31058496)

  • 1. Nano-Cell Interactions of Non-Cationic Bionanomaterials.
    Ho LWC; Liu Y; Han R; Bai Q; Choi CHJ
    Acc Chem Res; 2019 Jun; 52(6):1519-1530. PubMed ID: 31058496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular transport pathways of polymer coated gold nanoparticles.
    Lin IC; Liang M; Liu TY; Monteiro MJ; Toth I
    Nanomedicine; 2012 Jan; 8(1):8-11. PubMed ID: 22024197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological Diversity, Protein Adsorption, and Cellular Uptake of Polydopamine-Coated Gold Nanoparticles.
    Sy KHS; Ho LWC; Lau WCY; Ko H; Choi CHJ
    Langmuir; 2018 Nov; 34(46):14033-14045. PubMed ID: 30360612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Surface Modification with Hydrocarbyl Groups on the Exocytosis of Nanoparticles.
    Ho LWC; Yin B; Dai G; Choi CHJ
    Biochemistry; 2021 Apr; 60(13):1019-1030. PubMed ID: 33169977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dopamine-Mediated Assembly of Citrate-Capped Plasmonic Nanoparticles into Stable Core-Shell Nanoworms for Intracellular Applications.
    Choi CKK; Chiu YTE; Zhuo X; Liu Y; Pak CY; Liu X; Tse YS; Wang J; Choi CHJ
    ACS Nano; 2019 May; 13(5):5864-5884. PubMed ID: 31038921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nano-Bio Interactions in Cancer: From Therapeutics Delivery to Early Detection.
    Liu Y; Wang J; Xiong Q; Hornburg D; Tao W; Farokhzad OC
    Acc Chem Res; 2021 Jan; 54(2):291-301. PubMed ID: 33180454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in nonviral vectors for gene delivery.
    Guo X; Huang L
    Acc Chem Res; 2012 Jul; 45(7):971-9. PubMed ID: 21870813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular uptake, transport, and processing of gold nanostructures.
    Chithrani DB
    Mol Membr Biol; 2010 Oct; 27(7):299-311. PubMed ID: 20929337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dopamine Receptor-Mediated Binding and Cellular Uptake of Polydopamine-Coated Nanoparticles.
    Liu Y; Choi CKK; Hong H; Xiao Y; Kwok ML; Liu H; Tian XY; Choi CHJ
    ACS Nano; 2021 Aug; 15(8):13871-13890. PubMed ID: 34379407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism for the Cellular Uptake of Targeted Gold Nanorods of Defined Aspect Ratios.
    Yang H; Chen Z; Zhang L; Yung WY; Leung KC; Chan HY; Choi CH
    Small; 2016 Oct; 12(37):5178-5189. PubMed ID: 27442290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol-coated gold nanoparticles.
    Brandenberger C; Mühlfeld C; Ali Z; Lenz AG; Schmid O; Parak WJ; Gehr P; Rothen-Rutishauser B
    Small; 2010 Aug; 6(15):1669-78. PubMed ID: 20602428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting mitochondria with Au-Ag@Polydopamine nanoparticles for papillary thyroid cancer therapy.
    Wang W; Liu J; Feng W; Du S; Ge R; Li J; Liu Y; Sun H; Zhang D; Zhang H; Yang B
    Biomater Sci; 2019 Feb; 7(3):1052-1063. PubMed ID: 30628592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Nano-Bio Interactions of Nanomedicines: Understanding the Biochemical Driving Forces and Redox Reactions.
    Wang Y; Cai R; Chen C
    Acc Chem Res; 2019 Jun; 52(6):1507-1518. PubMed ID: 31149804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation, characterization and transfection efficiency of cationic PEGylated PLA nanoparticles as gene delivery systems.
    Chen J; Tian B; Yin X; Zhang Y; Hu D; Hu Z; Liu M; Pan Y; Zhao J; Li H; Hou C; Wang J; Zhang Y
    J Biotechnol; 2007 Jun; 130(2):107-13. PubMed ID: 17467097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the physicochemical properties and the biocompatibility of polyethylene glycol-conjugated gold nanoparticles: A formulation strategy for siRNA delivery.
    Rahme K; Guo J; Holmes JD; O'Driscoll CM
    Colloids Surf B Biointerfaces; 2015 Nov; 135():604-612. PubMed ID: 26322474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magainin-modified polydopamine nanoparticles for photothermal killing of bacteria at low temperature.
    Fan XL; Li HY; Ye WY; Zhao MQ; Huang DN; Fang Y; Zhou BQ; Ren KF; Ji J; Fu GS
    Colloids Surf B Biointerfaces; 2019 Nov; 183():110423. PubMed ID: 31437608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-vitro in-vivo correlation (IVIVC) in nanomedicine: Is protein corona the missing link?
    Jain P; Pawar RS; Pandey RS; Madan J; Pawar S; Lakshmi PK; Sudheesh MS
    Biotechnol Adv; 2017 Nov; 35(7):889-904. PubMed ID: 28844973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uptake and transfection efficiency of PEGylated cationic liposome-DNA complexes with and without RGD-tagging.
    Majzoub RN; Chan CL; Ewert KK; Silva BF; Liang KS; Jacovetty EL; Carragher B; Potter CS; Safinya CR
    Biomaterials; 2014 Jun; 35(18):4996-5005. PubMed ID: 24661552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular Fate of Nanoparticles with Polydopamine Surface Engineering and a Novel Strategy for Exocytosis-Inhibiting, Lysosome Impairment-Based Cancer Therapy.
    Ding L; Zhu X; Wang Y; Shi B; Ling X; Chen H; Nan W; Barrett A; Guo Z; Tao W; Wu J; Shi X
    Nano Lett; 2017 Nov; 17(11):6790-6801. PubMed ID: 29058908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning the Surface Chemistry of Melanin-Mimetic Polydopamine Nanoparticles Drastically Enhances Their Accumulation into Excised Human Skin.
    Sunoqrot S; Mahmoud NN; Ibrahim LH; Al-Dabash S; Raschke H; Hergenröder R
    ACS Biomater Sci Eng; 2020 Aug; 6(8):4424-4432. PubMed ID: 33455180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.