These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 31058498)

  • 1. Copper-Containing Carbon Feedstock for Growing Superclean Graphene.
    Jia K; Zhang J; Lin L; Li Z; Gao J; Sun L; Xue R; Li J; Kang N; Luo Z; Rummeli MH; Peng H; Liu Z
    J Am Chem Soc; 2019 May; 141(19):7670-7674. PubMed ID: 31058498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-Area Synthesis of Superclean Graphene via Selective Etching of Amorphous Carbon with Carbon Dioxide.
    Zhang J; Jia K; Lin L; Zhao W; Quang HT; Sun L; Li T; Li Z; Liu X; Zheng L; Xue R; Gao J; Luo Z; Rummeli MH; Yuan Q; Peng H; Liu Z
    Angew Chem Int Ed Engl; 2019 Oct; 58(41):14446-14451. PubMed ID: 31286615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superclean Growth of Graphene Using a Cold-Wall Chemical Vapor Deposition Approach.
    Jia K; Ci H; Zhang J; Sun Z; Ma Z; Zhu Y; Liu S; Liu J; Sun L; Liu X; Sun J; Yin W; Peng H; Lin L; Liu Z
    Angew Chem Int Ed Engl; 2020 Sep; 59(39):17214-17218. PubMed ID: 32542959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New Growth Frontier: Superclean Graphene.
    Zhang J; Sun L; Jia K; Liu X; Cheng T; Peng H; Lin L; Liu Z
    ACS Nano; 2020 Sep; 14(9):10796-10803. PubMed ID: 32840993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast Catalyst-Free Graphene Growth on Glass Assisted by Local Fluorine Supply.
    Xie Y; Cheng T; Liu C; Chen K; Cheng Y; Chen Z; Qiu L; Cui G; Yu Y; Cui L; Zhang M; Zhang J; Ding F; Liu K; Liu Z
    ACS Nano; 2019 Sep; 13(9):10272-10278. PubMed ID: 31430126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical vapor deposition of high quality graphene films from carbon dioxide atmospheres.
    Strudwick AJ; Weber NE; Schwab MG; Kettner M; Weitz RT; Wünsch JR; Müllen K; Sachdev H
    ACS Nano; 2015 Jan; 9(1):31-42. PubMed ID: 25398132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale and patternable graphene: direct transformation of amorphous carbon film into graphene/graphite on insulators via Cu mediation engineering and its application to all-carbon based devices.
    Chen YZ; Medina H; Lin HC; Tsai HW; Su TY; Chueh YL
    Nanoscale; 2015 Feb; 7(5):1678-87. PubMed ID: 25423257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper-Vapor-Assisted Growth and Defect-Healing of Graphene on Copper Surfaces.
    Lee HC; Bong H; Yoo MS; Jo M; Cho K
    Small; 2018 Jul; 14(30):e1801181. PubMed ID: 29966039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transfer-free batch fabrication of large-area suspended graphene membranes.
    Alemán B; Regan W; Aloni S; Altoe V; Alem N; Girit C; Geng B; Maserati L; Crommie M; Wang F; Zettl A
    ACS Nano; 2010 Aug; 4(8):4762-8. PubMed ID: 20604526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.
    Kim H; Song I; Park C; Son M; Hong M; Kim Y; Kim JS; Shin HJ; Baik J; Choi HC
    ACS Nano; 2013 Aug; 7(8):6575-82. PubMed ID: 23869700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective growth of graphene in layer-by-layer via chemical vapor deposition.
    Park J; An H; Choi DC; Hussain S; Song W; An KS; Lee WJ; Lee N; Lee WG; Jung J
    Nanoscale; 2016 Aug; 8(30):14633-42. PubMed ID: 27436358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression of copper thin film loss during graphene synthesis.
    Lee AL; Tao L; Akinwande D
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1527-32. PubMed ID: 25552194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bridging the Gap between Reality and Ideal in Chemical Vapor Deposition Growth of Graphene.
    Lin L; Deng B; Sun J; Peng H; Liu Z
    Chem Rev; 2018 Sep; 118(18):9281-9343. PubMed ID: 30207458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Force-Engineered Lint Roller for Superclean Graphene.
    Sun L; Lin L; Wang Z; Rui D; Yu Z; Zhang J; Li Y; Liu X; Jia K; Wang K; Zheng L; Deng B; Ma T; Kang N; Xu H; Novoselov KS; Peng H; Liu Z
    Adv Mater; 2019 Oct; 31(43):e1902978. PubMed ID: 31502709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast Transition of Nonuniform Graphene to High-Quality Uniform Monolayer Films on Liquid Cu.
    Xin X; Xu C; Zhang D; Liu Z; Ma W; Qian X; Chen ML; Du J; Cheng HM; Ren W
    ACS Appl Mater Interfaces; 2019 May; 11(19):17629-17636. PubMed ID: 31026138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transfer-Free, Large-Scale Growth of High-Quality Graphene on Insulating Substrate by Physical Contact of Copper Foil.
    Song I; Park Y; Cho H; Choi HC
    Angew Chem Int Ed Engl; 2018 Nov; 57(47):15374-15378. PubMed ID: 30267452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of surface oxidation of Cu substrates on the growth kinetics of graphene by chemical vapor deposition.
    Chang RJ; Lee CH; Lee MK; Chen CW; Wen CY
    Nanoscale; 2017 Feb; 9(6):2324-2329. PubMed ID: 28134390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical vapor deposition of graphene single crystals.
    Yan Z; Peng Z; Tour JM
    Acc Chem Res; 2014 Apr; 47(4):1327-37. PubMed ID: 24527957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hot wire chemical vapor deposition chemistry in the gas phase and on the catalyst surface with organosilicon compounds.
    Shi Y
    Acc Chem Res; 2015 Feb; 48(2):163-73. PubMed ID: 25586211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.