These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 31058501)

  • 1. Kinetic and Potential Energy Contributions to a Chemical Bond from the Charge and Energy Decomposition Scheme of Extended Transition State Natural Orbitals for Chemical Valence.
    Sagan F; Mitoraj MP
    J Phys Chem A; 2019 May; 123(21):4616-4622. PubMed ID: 31058501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Combined Charge and Energy Decomposition Scheme for Bond Analysis.
    Mitoraj MP; Michalak A; Ziegler T
    J Chem Theory Comput; 2009 Apr; 5(4):962-75. PubMed ID: 26609605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural orbitals for chemical valence as descriptors of chemical bonding in transition metal complexes.
    Mitoraj M; Michalak A
    J Mol Model; 2007 Feb; 13(2):347-55. PubMed ID: 17024408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bonding in ammonia borane: an analysis based on the natural orbitals for chemical valence and the extended transition state method (ETS-NOCV).
    Mitoraj MP
    J Phys Chem A; 2011 Dec; 115(51):14708-16. PubMed ID: 22085293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical description of hydrogen bonding in oxalic acid dimer and trimer based on the combined extended-transition-state energy decomposition analysis and natural orbitals for chemical valence (ETS-NOCV).
    Mitoraj MP; Kurczab R; Boczar M; Michalak A
    J Mol Model; 2010 Nov; 16(11):1789-95. PubMed ID: 20505966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical nature of interactions in Zn(II) complexes with 2,2'-bipyridyl: quantum theory of atoms in molecules (QTAIM), interacting quantum atoms (IQA), noncovalent interactions (NCI), and extended transition state coupled with natural orbitals for chemical valence (ETS-NOCV) comparative studies.
    Cukrowski I; de Lange JH; Mitoraj M
    J Phys Chem A; 2014 Jan; 118(3):623-37. PubMed ID: 24377828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applications of the ETS-NOCV method in descriptions of chemical reactions.
    Mitoraj MP; Parafiniuk M; Srebro M; Handzlik M; Buczek A; Michalak A
    J Mol Model; 2011 Sep; 17(9):2337-52. PubMed ID: 21445707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in Charge Displacement Analysis.
    Bistoni G; Belpassi L; Tarantelli F
    J Chem Theory Comput; 2016 Mar; 12(3):1236-44. PubMed ID: 26824715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A theoretical analysis of supported quintuple and quadruple chromium-chromium bonds.
    Ndambuki S; Ziegler T
    Inorg Chem; 2013 Apr; 52(7):3860-9. PubMed ID: 23480651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nature of the chemical bond revisited: an energy-partitioning analysis of nonpolar bonds.
    Kovács A; Esterhuysen C; Frenking G
    Chemistry; 2005 Mar; 11(6):1813-25. PubMed ID: 15672434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical analysis of the resonance assisted hydrogen bond based on the combined extended transition state method and natural orbitals for chemical valence scheme.
    Kurczab R; Mitoraj MP; Michalak A; Ziegler T
    J Phys Chem A; 2010 Aug; 114(33):8581-90. PubMed ID: 20099799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple boron-boron bonds in neutral molecules: an insight from the extended transition state method and the natural orbitals for chemical valence scheme.
    Mitoraj MP; Michalak A
    Inorg Chem; 2011 Mar; 50(6):2168-74. PubMed ID: 21314143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the putative Cr-Cr quintuple bond in Ar'CrCrAr' (Ar' = C6H3-2,6(C6H3-2,6-Pr(i)2)2 based on the combined natural orbitals for chemical valence and extended transition state method.
    Ndambuki S; Ziegler T
    Inorg Chem; 2012 Jul; 51(14):7794-800. PubMed ID: 22731692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genuine quadruple bonds between two main-group atoms. Chemical bonding in AeF
    Liu R; Qin L; Zhang Z; Zhao L; Sagan F; Mitoraj M; Frenking G
    Chem Sci; 2023 May; 14(18):4872-4887. PubMed ID: 37181783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nature of the polar covalent bond.
    Zhao L; Pan S; Frenking G
    J Chem Phys; 2022 Jul; 157(3):034105. PubMed ID: 35868915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical analysis of bonding in N-heterocyclic carbene-rhodium complexes.
    Srebro M; Michalak A
    Inorg Chem; 2009 Jun; 48(12):5361-9. PubMed ID: 19400577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical description of halogen bonding - an insight based on the natural orbitals for chemical valence combined with the extended-transition-state method (ETS-NOCV).
    Mitoraj MP; Michalak A
    J Mol Model; 2013 Nov; 19(11):4681-8. PubMed ID: 22669533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretical analysis of substituent electronic effects on phosphine-borane bonds.
    Sibbald PA
    J Mol Model; 2016 Nov; 22(11):261. PubMed ID: 27718077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bond orbitals from chemical valence theory.
    Michalak A; Mitoraj M; Ziegler T
    J Phys Chem A; 2008 Mar; 112(9):1933-9. PubMed ID: 18266342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. σ-Donation and π-Backdonation Effects in Dative Bonds of Main-Group Elements.
    Smith BA; Vogiatzis KD
    J Phys Chem A; 2021 Sep; 125(36):7956-7966. PubMed ID: 34477393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.