These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31058841)

  • 21. A fibre-reinforced poroviscoelastic model accurately describes the biomechanical behaviour of the rat Achilles tendon.
    Khayyeri H; Gustafsson A; Heuijerjans A; Matikainen MK; Julkunen P; Eliasson P; Aspenberg P; Isaksson H
    PLoS One; 2015; 10(6):e0126869. PubMed ID: 26030436
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ti
    Leong WXR; Al-Dhahebi AM; Ahmad MR; Saheed MSM
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014224
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Superelastic, Sensitive, and Low Hysteresis Flexible Strain Sensor Based on Wave-Patterned Liquid Metal for Human Activity Monitoring.
    Chen J; Zhang J; Luo Z; Zhang J; Li L; Su Y; Gao X; Li Y; Tang W; Cao C; Liu Q; Wang L; Li H
    ACS Appl Mater Interfaces; 2020 May; 12(19):22200-22211. PubMed ID: 32315158
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fiber Bragg grating displacement sensor for movement measurement of tendons and ligaments.
    Ren L; Song G; Conditt M; Noble PC; Li H
    Appl Opt; 2007 Oct; 46(28):6867-71. PubMed ID: 17906712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic Rotational Sensor Using Polymer Optical Fiber for Robot Movement Assessment Based on Intensity Variation.
    Shi J; Ghaffar A; Li Y; Mehdi I; Mehdi R; A Soomro F; Hussain S; Mehdi M; Li Q; Li Z
    Polymers (Basel); 2022 Nov; 14(23):. PubMed ID: 36501562
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical Strain Measurement with Step-Index Polymer Optical Fiber Based on the Phase Measurement of an Intensity-Modulated Signal.
    Becker T; Ziemann O; Engelbrecht R; Schmauss B
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30018260
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly Stretchable Core-Sheath Fibers via Wet-Spinning for Wearable Strain Sensors.
    Tang Z; Jia S; Wang F; Bian C; Chen Y; Wang Y; Li B
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6624-6635. PubMed ID: 29384359
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optical Strain Gauge Prototype Based on a High Sensitivity Balloon-like Interferometer and Additive Manufacturing.
    Cardoso VHR; Caldas P; Giraldi MTR; Frazão O; Costa JCWA; Santos JL
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236750
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wearable Ionogel-Based Fibers for Strain Sensors with Ultrawide Linear Response and Temperature Sensors Insensitive to Strain.
    Wang F; Chen J; Cui X; Liu X; Chang X; Zhu Y
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):30268-30278. PubMed ID: 35758312
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of fiber orientation and strain rate on the nonlinear uniaxial tensile material properties of tendon.
    Lynch HA; Johannessen W; Wu JP; Jawa A; Elliott DM
    J Biomech Eng; 2003 Oct; 125(5):726-31. PubMed ID: 14618932
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling the resistive viscoelasticity of conductive polymer composites for sensor usage.
    Mu Q; Wang J; Kuang X
    Soft Matter; 2023 Feb; 19(5):1025-1033. PubMed ID: 36648093
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly Sensitive and Stretchable Strain Sensor Based on a Synergistic Hybrid Conductive Network.
    Liu X; Liang X; Lin Z; Lei Z; Xiong Y; Hu Y; Zhu P; Sun R; Wong CP
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):42420-42429. PubMed ID: 32833419
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct 3D Printing of Highly Anisotropic, Flexible, Constriction-Resistive Sensors for Multidirectional Proprioception in Soft Robots.
    Mousavi S; Howard D; Zhang F; Leng J; Wang CH
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15631-15643. PubMed ID: 32129594
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure-function relations in mammalian tendon: the effect of geometrical nonuniformity.
    Lanir Y
    J Bioeng; 1978 Apr; 2(1-2):119-28. PubMed ID: 681314
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tri-Axial MRI Compatible Fiber-optic Force Sensor.
    Tan UX; Yang B; Gullapalli R; Desai JP
    IEEE Trans Robot; 2011 Feb; 27(1):65-74. PubMed ID: 21666783
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extremely Elastic Wearable Carbon Nanotube Fiber Strain Sensor for Monitoring of Human Motion.
    Ryu S; Lee P; Chou JB; Xu R; Zhao R; Hart AJ; Kim SG
    ACS Nano; 2015 Jun; 9(6):5929-36. PubMed ID: 26038807
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stretchable Nanocomposite Sensors, Nanomembrane Interconnectors, and Wireless Electronics toward Feedback-Loop Control of a Soft Earthworm Robot.
    Goldoni R; Ozkan-Aydin Y; Kim YS; Kim J; Zavanelli N; Mahmood M; Liu B; Hammond FL; Goldman DI; Yeo WH
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43388-43397. PubMed ID: 32791828
    [TBL] [Abstract][Full Text] [Related]  

  • 38. GelSight: High-Resolution Robot Tactile Sensors for Estimating Geometry and Force.
    Yuan W; Dong S; Adelson EH
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29186053
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fiber optic micro sensor for the measurement of tendon forces.
    Behrmann GP; Hidler J; Mirotznik MS
    Biomed Eng Online; 2012 Oct; 11():77. PubMed ID: 23033868
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rugged and Compact Three-Axis Force/Torque Sensor for Wearable Robots.
    Jeong H; Choi K; Park SJ; Park CH; Choi HR; Kim U
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33919929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.