These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 31058902)

  • 1. Proteome-wide Quantification of Labeling Homogeneity at the Single Molecule Level.
    Leclerc S; Arntz Y; Taniguchi Y
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31058902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extending Single Molecule Imaging to Proteome Analysis by Quantitation of Fluorescent Labeling Homogeneity in Complex Protein Samples.
    Leclerc S; Arntz Y; Taniguchi Y
    Bioconjug Chem; 2018 Aug; 29(8):2541-2549. PubMed ID: 29975043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescent Biosensors Based on Single-Molecule Counting.
    Ma F; Li Y; Tang B; Zhang CY
    Acc Chem Res; 2016 Sep; 49(9):1722-30. PubMed ID: 27583695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein detection and quantitation technologies for gel-based proteome analysis.
    Weiss W; Weiland F; Görg A
    Methods Mol Biol; 2009; 564():59-82. PubMed ID: 19544017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent Labeling of Proteins in Whole Cell Extracts for Single-Molecule Imaging.
    Hansen SR; Rodgers ML; Hoskins AA
    Methods Enzymol; 2016; 581():83-104. PubMed ID: 27793294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards multidimensional liquid chromatography separation of proteins using fluorescence and isotope-coded protein labelling for quantitative proteomics.
    Tribl F; Lohaus C; Dombert T; Langenfeld E; Piechura H; Warscheid B; Meyer HE; Marcus K
    Proteomics; 2008 Mar; 8(6):1204-11. PubMed ID: 18271069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated Stoichiometry Analysis of Single-Molecule Fluorescence Imaging Traces via Deep Learning.
    Xu J; Qin G; Luo F; Wang L; Zhao R; Li N; Yuan J; Fang X
    J Am Chem Soc; 2019 May; 141(17):6976-6985. PubMed ID: 30950273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single Molecule Tracking and Localization of Mitochondrial Protein Complexes in Live Cells.
    Appelhans T; Busch K
    Methods Mol Biol; 2017; 1567():273-291. PubMed ID: 28276025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Occupancy of Nanodot Arrays.
    Cai H; Wolfenson H; Depoil D; Dustin ML; Sheetz MP; Wind SJ
    ACS Nano; 2016 Apr; 10(4):4173-83. PubMed ID: 26966946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expanding the Dynamic Range of Fluorescence Assays through Single-Molecule Counting and Intensity Calibration.
    Smith L; Kohli M; Smith AM
    J Am Chem Soc; 2018 Oct; 140(42):13904-13912. PubMed ID: 30215524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternative fluorescent labeling strategies for characterizing gram-positive pathogenic bacteria: Flow cytometry supported counting, sorting, and proteome analysis of Staphylococcus aureus retrieved from infected host cells.
    Hildebrandt P; Surmann K; Salazar MG; Normann N; Völker U; Schmidt F
    Cytometry A; 2016 Oct; 89(10):932-940. PubMed ID: 27643682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Method to identify and minimize artifacts induced by fluorescent impurities in single-molecule localization microscopy.
    Davis JL; Dong B; Sun C; Zhang HF
    J Biomed Opt; 2018 Oct; 23(10):1-14. PubMed ID: 30334394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative proteome analysis in benign thyroid nodular disease using the fluorescent ruthenium II tris(bathophenanthroline disulfonate) stain.
    Berger K; Wissmann D; Ihling C; Kalkhof S; Beck-Sickinger A; Sinz A; Paschke R; Führer D
    Mol Cell Endocrinol; 2004 Nov; 227(1-2):21-30. PubMed ID: 15501581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microsecond Conformational Dynamics of Biopolymers Revealed by Dynamic-Quenching Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy with Single Dye Labeling.
    Sarkar B; Ishii K; Tahara T
    J Phys Chem Lett; 2019 Sep; 10(18):5536-5541. PubMed ID: 31393133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single Molecule Fluorescent Colocalization of Split Aptamers for Ultrasensitive Detection of Biomolecules.
    Zhang H; Liu Y; Zhang K; Ji J; Liu J; Liu B
    Anal Chem; 2018 Aug; 90(15):9315-9321. PubMed ID: 30003776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimized Fluorescence-Based Detection in Single Molecule Synthesis Process.
    Chen HH; Lu CC
    J Comput Biol; 2021 Feb; 28(2):195-208. PubMed ID: 33202153
    [No Abstract]   [Full Text] [Related]  

  • 17. In situ fluorescent profiling of living cell membrane proteins at a single-molecule level.
    Fan Y; Li L; Lu M; Si H; Tang B
    Chem Commun (Camb); 2019 Apr; 55(28):4043-4046. PubMed ID: 30869697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Experimental estimation of proteome size for cells and human plasma].
    Naryzhny SN; Zgoda VG; Maynskova MA; Ronzhina NL; Belyakova NV; Legina OK; Archakov AI
    Biomed Khim; 2015; 61(2):279-85. PubMed ID: 25978394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasensitive proteome analysis using paramagnetic bead technology.
    Hughes CS; Foehr S; Garfield DA; Furlong EE; Steinmetz LM; Krijgsveld J
    Mol Syst Biol; 2014 Oct; 10(10):757. PubMed ID: 25358341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competitive Assays of Label-Free DNA Hybridization with Single-Molecule Fluorescence Imaging Detection.
    Peterson EM; Manhart MW; Harris JM
    Anal Chem; 2016 Jun; 88(12):6410-7. PubMed ID: 27203690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.