These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 31059023)

  • 1. miR‑148 family members are putative biomarkers for sepsis.
    Dong L; Li H; Zhang S; Yang G
    Mol Med Rep; 2019 Jun; 19(6):5133-5141. PubMed ID: 31059023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the molecular mechanisms of osteosarcoma by the integrated analysis of mRNAs and miRNA microarrays.
    Shen H; Wang W; Ni B; Zou Q; Lu H; Wang Z
    Int J Mol Med; 2018 Jul; 42(1):21-30. PubMed ID: 29620143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of key pathogenic genes of sepsis based on the Gene Expression Omnibus database.
    Lu X; Xue L; Sun W; Ye J; Zhu Z; Mei H
    Mol Med Rep; 2018 Feb; 17(2):3042-3054. PubMed ID: 29257295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring of the molecular mechanism of rhinitis via bioinformatics methods.
    Song Y; Yan Z
    Mol Med Rep; 2018 Feb; 17(2):3014-3020. PubMed ID: 29257233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of potential genes and miRNAs associated with sepsis based on microarray analysis.
    Li Y; Zhang F; Cong Y; Zhao Y
    Mol Med Rep; 2018 May; 17(5):6227-6234. PubMed ID: 29512785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis.
    Wen P; Chidanguro T; Shi Z; Gu H; Wang N; Wang T; Li Y; Gao J
    Mol Med Rep; 2018 Aug; 18(2):1538-1550. PubMed ID: 29845250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated network analysis to explore the key genes regulated by parathyroid hormone receptor 1 in osteosarcoma.
    Guan D; Tian H
    World J Surg Oncol; 2017 Sep; 15(1):177. PubMed ID: 28934958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of differentially expressed genes, transcription factors, microRNAs and pathways in neutrophils of sepsis patients through bioinformatics analysis.
    Zheng Y; Peng L; He Z; Zou Z; Li F; Huang C; Li W
    Cell Mol Biol (Noisy-le-grand); 2022 Feb; 67(5):405-420. PubMed ID: 35818227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanisms underlying gliomas and glioblastoma pathogenesis revealed by bioinformatics analysis of microarray data.
    Vastrad B; Vastrad C; Godavarthi A; Chandrashekar R
    Med Oncol; 2017 Sep; 34(11):182. PubMed ID: 28952134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of key genes as potential diagnostic biomarkers in sepsis by bioinformatics analysis.
    Lin G; Li N; Liu J; Sun J; Zhang H; Gui M; Zeng Y; Tang J
    PeerJ; 2024; 12():e17542. PubMed ID: 38912048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of candidate target genes for human peripheral arterial disease using weighted gene co‑expression network analysis.
    Yin DX; Zhao HM; Sun DJ; Yao J; Ding DY
    Mol Med Rep; 2015 Dec; 12(6):8107-12. PubMed ID: 26498853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Biomarkers Associated with Septic Cardiomyopathy Based on Bioinformatics Analyses.
    Chen M; Kong C; Zheng Z; Li Y
    J Comput Biol; 2020 Jan; 27(1):69-80. PubMed ID: 31424269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular characterization of metastatic osteosarcoma: Differentially expressed genes, transcription factors and microRNAs.
    Heng L; Jia Z; Bai J; Zhang K; Zhu Y; Ma J; Zhang J; Duan H
    Mol Med Rep; 2017 May; 15(5):2829-2836. PubMed ID: 28260111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinformatics analyses of significant genes, related pathways and candidate prognostic biomarkers in glioblastoma.
    Zhou L; Tang H; Wang F; Chen L; Ou S; Wu T; Xu J; Guo K
    Mol Med Rep; 2018 Nov; 18(5):4185-4196. PubMed ID: 30132538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinformatic identification of candidate biomarkers and related transcription factors in nasopharyngeal carcinoma.
    Ye Z; Wang F; Yan F; Wang L; Li B; Liu T; Hu F; Jiang M; Li W; Fu Z
    World J Surg Oncol; 2019 Apr; 17(1):60. PubMed ID: 30935420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The potential biomarkers for the formation and development of intracranial aneurysm.
    Gao Y; Zhao C; Wang J; Li H; Yang B
    J Clin Neurosci; 2020 Nov; 81():270-278. PubMed ID: 33222929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of key genes and miRNAs responsible for loss of muscle force in patients during an acute exacerbation of chronic obstructive pulmonary disease.
    Duan Y; Zhou M; Xiao J; Wu C; Zhou L; Zhou F; Du C; Song Y
    Int J Mol Med; 2016 Nov; 38(5):1450-1462. PubMed ID: 28025995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanisms of pathogenesis in hepatocellular carcinoma revealed by RNA‑sequencing.
    Liu Y; Yang Z; Du F; Yang Q; Hou J; Yan X; Geng Y; Zhao Y; Wang H
    Mol Med Rep; 2017 Nov; 16(5):6674-6682. PubMed ID: 28901494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of key genes and pathways associated with classical Hodgkin lymphoma by bioinformatics analysis.
    Kuang Z; Guo L; Li X
    Mol Med Rep; 2017 Oct; 16(4):4685-4693. PubMed ID: 28791394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening of potential gene markers for predicting carotid atheroma plaque formation using bioinformatics approaches.
    Wang G; Kuai D; Yang Y; Yang G; Wei Z; Zhao W
    Mol Med Rep; 2017 Apr; 15(4):2039-2048. PubMed ID: 28260035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.