These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

675 related articles for article (PubMed ID: 31059030)

  • 1. Interleukin‑17A facilitates osteoclast differentiation and bone resorption via activation of autophagy in mouse bone marrow macrophages.
    Song L; Tan J; Wang Z; Ding P; Tang Q; Xia M; Wei Y; Chen L
    Mol Med Rep; 2019 Jun; 19(6):4743-4752. PubMed ID: 31059030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloroquine and 3-Methyladenine Attenuates Periodontal Inflammation and Bone Loss in Experimental Periodontitis.
    He S; Zhou Q; Luo B; Chen B; Li L; Yan F
    Inflammation; 2020 Feb; 43(1):220-230. PubMed ID: 31720989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dihydroartemisinin attenuates osteoclast formation and bone resorption via inhibiting the NF‑κB, MAPK and NFATc1 signaling pathways and alleviates osteoarthritis.
    Ding D; Yan J; Feng G; Zhou Y; Ma L; Jin Q
    Int J Mol Med; 2022 Jan; 49(1):. PubMed ID: 34738623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-inflammatory, anti-osteoclastic, and antioxidant activities of genistein protect against alveolar bone loss and periodontal tissue degradation in a mouse model of periodontitis.
    Bhattarai G; Poudel SB; Kook SH; Lee JC
    J Biomed Mater Res A; 2017 Sep; 105(9):2510-2521. PubMed ID: 28509410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systemic administration of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4)-Ig abrogates alveolar bone resorption in induced periodontitis through inhibition of osteoclast differentiation and activation: An experimental investigation.
    Nakane S; Imamura K; Hisanaga R; Ishihara K; Saito A
    J Periodontal Res; 2021 Oct; 56(5):972-981. PubMed ID: 34129238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Desoxyrhapontigenin inhibits RANKL‑induced osteoclast formation and prevents inflammation‑mediated bone loss.
    Tran PT; Park DH; Kim O; Kwon SH; Min BS; Lee JH
    Int J Mol Med; 2018 Jul; 42(1):569-578. PubMed ID: 29693149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isobavachin attenuates osteoclastogenesis and periodontitis-induced bone loss by inhibiting cellular iron accumulation and mitochondrial biogenesis.
    Li T; Du Y; Yao H; Zhao B; Wang Z; Chen R; Ji Y; Du M
    Biochem Pharmacol; 2024 Jun; 224():116202. PubMed ID: 38615917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncaria tomentosa reduces osteoclastic bone loss in vivo.
    Lima V; Melo IM; Taira TM; Buitrago LYW; Fonteles CSR; Leal LKAM; Souza ASQ; Almeida TS; Costa Filho RND; Moraes MO; Cunha FQ; Fukada SY
    Phytomedicine; 2020 Dec; 79():153327. PubMed ID: 32920290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autophagy negative-regulating Wnt signaling enhanced inflammatory osteoclastogenesis from Pre-OCs in vitro.
    Chen L; Yang Y; Bao J; Wang Z; Xia M; Dai A; Tan J; Zhou L; Wu Y; Sun W
    Biomed Pharmacother; 2020 Jun; 126():110093. PubMed ID: 32199225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IL-1β differently stimulates proliferation and multinucleation of distinct mouse bone marrow osteoclast precursor subsets.
    Cao Y; Jansen ID; Sprangers S; Stap J; Leenen PJ; Everts V; de Vries TJ
    J Leukoc Biol; 2016 Sep; 100(3):513-23. PubMed ID: 26957213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PF-3845, a Fatty Acid Amide Hydrolase Inhibitor, Directly Suppresses Osteoclastogenesis through ERK and NF-κB Pathways In Vitro and Alveolar Bone Loss In Vivo.
    Ihn HJ; Kim YS; Lim S; Bae JS; Jung JC; Kim YH; Park JW; Wang Z; Koh JT; Bae YC; Baek MC; Park EK
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33671948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of dimeric glucocorticoid receptors in osteoclast progenitors potentiates RANKL induced mature osteoclast bone resorbing activity.
    Conaway HH; Henning P; Lie A; Tuckermann J; Lerner UH
    Bone; 2016 Dec; 93():43-54. PubMed ID: 27596806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AZD8835 inhibits osteoclastogenesis and periodontitis-induced alveolar bone loss in rats.
    Wang Y; Chen X; Chen X; Zhou Z; Xu W; Xu F; Zhang S
    J Cell Physiol; 2019 Jul; 234(7):10432-10444. PubMed ID: 30652303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. STING inhibition alleviates bone resorption in apical periodontitis.
    Mao HQ; Zhou L; Li JQ; Wen YH; Chen Z; Zhang L
    Int Endod J; 2024 Jul; 57(7):951-965. PubMed ID: 38411951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DC-STAMP Is an Osteoclast Fusogen Engaged in Periodontal Bone Resorption.
    Wisitrasameewong W; Kajiya M; Movila A; Rittling S; Ishii T; Suzuki M; Matsuda S; Mazda Y; Torruella MR; Azuma MM; Egashira K; Freire MO; Sasaki H; Wang CY; Han X; Taubman MA; Kawai T
    J Dent Res; 2017 Jun; 96(6):685-693. PubMed ID: 28199142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Streptococcus gordonii induces bone resorption by increasing osteoclast differentiation and reducing osteoblast differentiation.
    Park OJ; Kim J; Kim HY; Kwon Y; Yun CH; Han SH
    Microb Pathog; 2019 Jan; 126():218-223. PubMed ID: 30414445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Syndecan 4 contributes to osteoclast differentiation induced by RANKL through enhancing autophagy.
    Li J; Sun Z; Lin Y; Yan Y; Yan H; Jing B; Han Z
    Int Immunopharmacol; 2021 Feb; 91():107275. PubMed ID: 33360085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA damage-inducible transcript 3 deficiency promotes bone resorption in murine periodontitis models.
    Luo Y; Yang B; Dong W; Yu W; Jia M; Wang J
    J Periodontal Res; 2023 Aug; 58(4):841-851. PubMed ID: 37243354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of the liver X receptor-β potently inhibits osteoclastogenesis from lipopolysaccharide-exposed bone marrow-derived macrophages.
    Robertson Remen KM; Lerner UH; Gustafsson JÅ; Andersson G
    J Leukoc Biol; 2013 Jan; 93(1):71-82. PubMed ID: 23099324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerium Oxide Nanoparticles Regulate Osteoclast Differentiation Bidirectionally by Modulating the Cellular Production of Reactive Oxygen Species.
    Yuan K; Mei J; Shao D; Zhou F; Qiao H; Liang Y; Li K; Tang T
    Int J Nanomedicine; 2020; 15():6355-6372. PubMed ID: 32922006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.