These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31059229)

  • 21. A Nanowire Nest Structure Comprising Copper Silicide and Silicon Nanowires for Lithium-Ion Battery Anodes with High Areal Loading.
    Collins GA; Kilian S; Geaney H; Ryan KM
    Small; 2021 Aug; 17(34):e2102333. PubMed ID: 34263558
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: an in situ transmission electron microscopy study.
    Liu XH; Huang S; Picraux ST; Li J; Zhu T; Huang JY
    Nano Lett; 2011 Sep; 11(9):3991-7. PubMed ID: 21859095
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alkanethiol-passivated ge nanowires as high-performance anode materials for lithium-ion batteries: the role of chemical surface functionalization.
    Yuan FW; Yang HJ; Tuan HY
    ACS Nano; 2012 Nov; 6(11):9932-42. PubMed ID: 23043347
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Germanium tin alloy nanowires as anode materials for high performance Li-ion batteries.
    Doherty J; McNulty D; Biswas S; Moore K; Conroy M; Bangert U; O'Dwyer C; Holmes JD
    Nanotechnology; 2020 Apr; 31(16):165402. PubMed ID: 31891917
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ge/C nanowires as high-capacity and long-life anode materials for Li-ion batteries.
    Liu J; Song K; Zhu C; Chen CC; van Aken PA; Maier J; Yu Y
    ACS Nano; 2014 Jul; 8(7):7051-9. PubMed ID: 24940842
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controlling Catalyst-Free Formation and Hole Gas Accumulation by Fabricating Si/Ge Core-Shell and Si/Ge/Si Core-Double Shell Nanowires.
    Zhang X; Jevasuwan W; Sugimoto Y; Fukata N
    ACS Nano; 2019 Nov; 13(11):13403-13412. PubMed ID: 31626528
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High capacity Li ion battery anodes using ge nanowires.
    Chan CK; Zhang XF; Cui Y
    Nano Lett; 2008 Jan; 8(1):307-9. PubMed ID: 18095738
    [TBL] [Abstract][Full Text] [Related]  

  • 28.
    Yang Y; Wang J; Kim SC; Zhang W; Peng Y; Zhang P; Vilá RA; Ma Y; Jeong YK; Cui Y
    Nano Lett; 2023 Jun; 23(11):5042-5047. PubMed ID: 37236151
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alloying Germanium Nanowire Anodes Dramatically Outperform Graphite Anodes in Full-Cell Chemistries over a Wide Temperature Range.
    Collins GA; McNamara K; Kilian S; Geaney H; Ryan KM
    ACS Appl Energy Mater; 2021 Feb; 4(2):1793-1804. PubMed ID: 34296064
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reversible Li-Ion Conversion Reaction for a Ti
    Chen X; Fister TT; Esbenshade J; Shi B; Hu X; Wu J; Gewirth AA; Bedzyk MJ; Fenter P
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8169-8176. PubMed ID: 28192652
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancing the performance of germanium nanowire anodes for Li-ion batteries by direct growth on textured copper.
    Geaney H; Bree G; Stokes K; Collins GA; Aminu IS; Kennedy T; Ryan KM
    Chem Commun (Camb); 2019 Jul; 55(54):7780-7783. PubMed ID: 31210216
    [TBL] [Abstract][Full Text] [Related]  

  • 32. (De)Lithiation and Strain Mechanism in Crystalline Ge Nanoparticles.
    Zapata Dominguez D; Berhaut CL; Buzlukov A; Bardet M; Kumar P; Jouneau PH; Desrues A; Soloy A; Haon C; Herlin-Boime N; Tardif S; Lyonnard S; Pouget S
    ACS Nano; 2022 Jun; 16(6):9819-9829. PubMed ID: 35613437
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solution-grown germanium nanowire anodes for lithium-ion batteries.
    Chockla AM; Klavetter KC; Mullins CB; Korgel BA
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4658-64. PubMed ID: 22894797
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel approach for improving the performance of Si-based anodes in lithium-ion batteries.
    Sadeghipari M; Mashayekhi A; Mohajerzadeh S
    Nanotechnology; 2018 Feb; 29(5):055403. PubMed ID: 29231184
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plateau-Rayleigh Crystal Growth of Nanowire Heterostructures: Strain-Modified Surface Chemistry and Morphological Control in One, Two, and Three Dimensions.
    Day RW; Mankin MN; Lieber CM
    Nano Lett; 2016 Apr; 16(4):2830-6. PubMed ID: 26929996
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dense Silicon Nanowire Networks Grown on a Stainless-Steel Fiber Cloth: A Flexible and Robust Anode for Lithium-Ion Batteries.
    Imtiaz S; Amiinu IS; Storan D; Kapuria N; Geaney H; Kennedy T; Ryan KM
    Adv Mater; 2021 Dec; 33(52):e2105917. PubMed ID: 34613631
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sn-induced low-temperature growth of Ge nanowire electrodes with a large lithium storage capacity.
    Ko YD; Kang JG; Lee GH; Park JG; Park KS; Jin YH; Kim DW
    Nanoscale; 2011 Aug; 3(8):3371-5. PubMed ID: 21750788
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-step fabrication of fibrous Si/Sn composite nanowire anodes by high-pressure He plasma sputtering for high-capacity Li-ion batteries.
    Uchida G; Masumoto K; Sakakibara M; Ikebe Y; Ono S; Koga K; Kozawa T
    Sci Rep; 2023 Sep; 13(1):14280. PubMed ID: 37684353
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spinodal Decomposition Method for Structuring Germanium-Carbon Li-Ion Battery Anodes.
    Jo C; Wen B; Jeong H; Park SK; Son Y; De Volder M
    ACS Nano; 2023 May; 17(9):8403-8410. PubMed ID: 37067407
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Indium Nitride Nanowires: Low Redox Potential Anodes for Lithium-Ion Batteries.
    Guo T; Zhou Y; Wang Z; Cunha J; Alves C; Ferreira P; Hou Z; Yin H
    Adv Sci (Weinh); 2024 Jun; 11(22):e2310166. PubMed ID: 38544352
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.