BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 31059255)

  • 1. OPEP6: A New Constant-pH Molecular Dynamics Simulation Scheme with OPEP Coarse-Grained Force Field.
    Barroso da Silva FL; Sterpone F; Derreumaux P
    J Chem Theory Comput; 2019 Jun; 15(6):3875-3888. PubMed ID: 31059255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmarking a Fast Proton Titration Scheme in Implicit Solvent for Biomolecular Simulations.
    Barroso da Silva FL; MacKernan D
    J Chem Theory Comput; 2017 Jun; 13(6):2915-2929. PubMed ID: 28376614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized Born Based Continuous Constant pH Molecular Dynamics in Amber: Implementation, Benchmarking and Analysis.
    Huang Y; Harris RC; Shen J
    J Chem Inf Model; 2018 Jul; 58(7):1372-1383. PubMed ID: 29949356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GPU-Accelerated All-Atom Particle-Mesh Ewald Continuous Constant pH Molecular Dynamics in Amber.
    Harris JA; Liu R; Martins de Oliveira V; Vázquez-Montelongo EA; Henderson JA; Shen J
    J Chem Theory Comput; 2022 Dec; 18(12):7510-7527. PubMed ID: 36377980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Introducing titratable water to all-atom molecular dynamics at constant pH.
    Chen W; Wallace JA; Yue Z; Shen JK
    Biophys J; 2013 Aug; 105(4):L15-7. PubMed ID: 23972860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TMFF-A Two-Bead Multipole Force Field for Coarse-Grained Molecular Dynamics Simulation of Protein.
    Li M; Liu F; Zhang JZ
    J Chem Theory Comput; 2016 Dec; 12(12):6147-6156. PubMed ID: 27782390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein p K
    Villa F; Simonson T
    J Chem Theory Comput; 2018 Dec; 14(12):6714-6721. PubMed ID: 30431264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of protein conformational freedom as a function of pH: constant-pH molecular dynamics using implicit titration.
    Baptista AM; Martel PJ; Petersen SB
    Proteins; 1997 Apr; 27(4):523-44. PubMed ID: 9141133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites.
    Rzepiela AJ; Louhivuori M; Peter C; Marrink SJ
    Phys Chem Chem Phys; 2011 Jun; 13(22):10437-48. PubMed ID: 21494747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Hierarchical Approach to Predict Conformation-Dependent Histidine Protonation States in Stable and Flexible Proteins.
    Sakipov SN; Flores-Canales JC; Kurnikova MG
    J Phys Chem B; 2019 Jun; 123(24):5024-5034. PubMed ID: 31095377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward accurate prediction of pKa values for internal protein residues: the importance of conformational relaxation and desolvation energy.
    Wallace JA; Wang Y; Shi C; Pastoor KJ; Nguyen BL; Xia K; Shen JK
    Proteins; 2011 Dec; 79(12):3364-73. PubMed ID: 21748801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GPU-Accelerated Implementation of Continuous Constant pH Molecular Dynamics in Amber: p
    Harris RC; Shen J
    J Chem Inf Model; 2019 Nov; 59(11):4821-4832. PubMed ID: 31661616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of system net charge and electrostatic truncation on all-atom constant pH molecular dynamics.
    Chen W; Shen JK
    J Comput Chem; 2014 Oct; 35(27):1986-96. PubMed ID: 25142416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constant pH molecular dynamics of proteins in explicit solvent with proton tautomerism.
    Goh GB; Hulbert BS; Zhou H; Brooks CL
    Proteins; 2014 Jul; 82(7):1319-31. PubMed ID: 24375620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous Constant pH Molecular Dynamics in Explicit Solvent with pH-Based Replica Exchange.
    Wallace JA; Shen JK
    J Chem Theory Comput; 2011 Aug; 7(8):2617-29. PubMed ID: 26606635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All-Atom Continuous Constant pH Molecular Dynamics With Particle Mesh Ewald and Titratable Water.
    Huang Y; Chen W; Wallace JA; Shen J
    J Chem Theory Comput; 2016 Nov; 12(11):5411-5421. PubMed ID: 27709966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Maximum-Likelihood Approach to Force-Field Calibration.
    Zaborowski B; Jagieła D; Czaplewski C; Hałabis A; Lewandowska A; Żmudzińska W; Ołdziej S; Karczyńska A; Omieczynski C; Wirecki T; Liwo A
    J Chem Inf Model; 2015 Sep; 55(9):2050-70. PubMed ID: 26263302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein Simulations in Fluids: Coupling the OPEP Coarse-Grained Force Field with Hydrodynamics.
    Sterpone F; Derreumaux P; Melchionna S
    J Chem Theory Comput; 2015 Apr; 11(4):1843-53. PubMed ID: 26574390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observations on AMBER Force Field Performance under the Conditions of Low pH and High Salt Concentrations.
    Liu H; Tan Q; Han L; Huo S
    J Phys Chem B; 2017 Oct; 121(42):9838-9847. PubMed ID: 28962533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mixing MARTINI: electrostatic coupling in hybrid atomistic-coarse-grained biomolecular simulations.
    Wassenaar TA; Ingólfsson HI; Priess M; Marrink SJ; Schäfer LV
    J Phys Chem B; 2013 Apr; 117(13):3516-30. PubMed ID: 23406326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.