These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 31059352)

  • 1. Alpha Frequency Entrainment Reduces the Effect of Visual Distractors.
    Wiesman AI; Wilson TW
    J Cogn Neurosci; 2019 Sep; 31(9):1392-1403. PubMed ID: 31059352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Individual Alpha Peak Frequency Predicts 10 Hz Flicker Effects on Selective Attention.
    Gulbinaite R; van Viegen T; Wieling M; Cohen MX; VanRullen R
    J Neurosci; 2017 Oct; 37(42):10173-10184. PubMed ID: 28931569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. No Evidence for Entrainment: Endogenous Gamma Oscillations and Rhythmic Flicker Responses Coexist in Visual Cortex.
    Duecker K; Gutteling TP; Herrmann CS; Jensen O
    J Neurosci; 2021 Aug; 41(31):6684-6698. PubMed ID: 34230106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal gamma-band entrainment of visual cortex.
    Petro NM; Webert LK; Springer SD; Okelberry HJ; John JA; Horne LK; Glesinger R; Rempe MP; Wilson TW
    Hum Brain Mapp; 2024 Jul; 45(10):e26775. PubMed ID: 38970249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frontoparietal Networks Mediate the Behavioral Impact of Alpha Inhibition in Visual Cortex.
    Wiesman AI; Groff BR; Wilson TW
    Cereb Cortex; 2019 Jul; 29(8):3505-3513. PubMed ID: 30215685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of Oscillatory Phase in Determining the Temporal Organization of Perception: Evidence from Sensory Entrainment.
    Ronconi L; Melcher D
    J Neurosci; 2017 Nov; 37(44):10636-10644. PubMed ID: 28972130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-modal distractors modulate oscillatory alpha power: the neural basis of impaired task performance.
    Weise A; Hartmann T; Schröger E; Weisz N; Ruhnau P
    Psychophysiology; 2016 Nov; 53(11):1651-1659. PubMed ID: 27468982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. No changes in parieto-occipital alpha during neural phase locking to visual quasi-periodic theta-, alpha-, and beta-band stimulation.
    Keitel C; Benwell CSY; Thut G; Gross J
    Eur J Neurosci; 2018 Oct; 48(7):2551-2565. PubMed ID: 29737585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual flicker in the gamma-band range does not draw attention.
    van Diepen RM; Born S; Souto D; Gauch A; Kerzel D
    J Neurophysiol; 2010 Mar; 103(3):1606-13. PubMed ID: 20089822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disturbances in primary visual processing as a function of healthy aging.
    Springer SD; Erker TD; Schantell M; Johnson HJ; Willett MP; Okelberry HJ; Rempe MP; Wilson TW
    Neuroimage; 2023 May; 271():120020. PubMed ID: 36914104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alpha oscillations do not implement gain control in early visual cortex but rather gating in parieto-occipital regions.
    Zhigalov A; Jensen O
    Hum Brain Mapp; 2020 Dec; 41(18):5176-5186. PubMed ID: 32822098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Individual alpha frequency increases during a task but is unchanged by alpha-band flicker.
    Gray MJ; Emmanouil TA
    Psychophysiology; 2020 Feb; 57(2):e13480. PubMed ID: 31573080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clarifying frequency-dependent brightness enhancement: delta- and theta-band flicker, not alpha-band flicker, consistently seen as brightest.
    Bertrand JK; Ouellette Zuk AA; Chapman CS
    Exp Brain Res; 2019 Aug; 237(8):2061-2073. PubMed ID: 31172241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Top-Down Control of Alpha Phase Adjustment in Anticipation of Temporally Predictable Visual Stimuli.
    Solís-Vivanco R; Jensen O; Bonnefond M
    J Cogn Neurosci; 2018 Aug; 30(8):1157-1169. PubMed ID: 29762100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhythmic TMS causes local entrainment of natural oscillatory signatures.
    Thut G; Veniero D; Romei V; Miniussi C; Schyns P; Gross J
    Curr Biol; 2011 Jul; 21(14):1176-85. PubMed ID: 21723129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcranial direct-current stimulation modulates offline visual oscillatory activity: A magnetoencephalography study.
    Heinrichs-Graham E; McDermott TJ; Mills MS; Coolidge NM; Wilson TW
    Cortex; 2017 Mar; 88():19-31. PubMed ID: 28042984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-frequency alternating current stimulation rhythmically suppresses gamma-band oscillations and impairs perceptual performance.
    Herring JD; Esterer S; Marshall TR; Jensen O; Bergmann TO
    Neuroimage; 2019 Jan; 184():440-449. PubMed ID: 30243972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theta Phase-dependent Modulation of Perception by Concurrent Transcranial Alternating Current Stimulation and Periodic Visual Stimulation.
    Somer E; Allen J; Brooks JL; Buttrill V; Javadi AH
    J Cogn Neurosci; 2020 Jun; 32(6):1142-1152. PubMed ID: 32013685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frontal eye fields control attentional modulation of alpha and gamma oscillations in contralateral occipitoparietal cortex.
    Marshall TR; O'Shea J; Jensen O; Bergmann TO
    J Neurosci; 2015 Jan; 35(4):1638-47. PubMed ID: 25632139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced occipital alpha power indexes enhanced excitability rather than improved visual perception.
    Lange J; Oostenveld R; Fries P
    J Neurosci; 2013 Feb; 33(7):3212-20. PubMed ID: 23407974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.