BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 31059461)

  • 1. Real-World Gait Speed Estimation Using Wrist Sensor: A Personalized Approach.
    Soltani A; Dejnabadi H; Savary M; Aminian K
    IEEE J Biomed Health Inform; 2020 Mar; 24(3):658-668. PubMed ID: 31059461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A wrist sensor and algorithm to determine instantaneous walking cadence and speed in daily life walking.
    Fasel B; Duc C; Dadashi F; Bardyn F; Savary M; Farine PA; Aminian K
    Med Biol Eng Comput; 2017 Oct; 55(10):1773-1785. PubMed ID: 28197810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regression Model-Based Walking Speed Estimation Using Wrist-Worn Inertial Sensor.
    Zihajehzadeh S; Park EJ
    PLoS One; 2016; 11(10):e0165211. PubMed ID: 27764231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Ambulatory Gait Monitoring System with Activity Classification and Gait Parameter Calculation Based on a Single Foot Inertial Sensor.
    Song M; Kim J
    IEEE Trans Biomed Eng; 2018 Apr; 65(4):885-893. PubMed ID: 28708542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-World Gait Detection Using a Wrist-Worn Inertial Sensor: Validation Study.
    Kluge F; Brand YE; Micó-Amigo ME; Bertuletti S; D'Ascanio I; Gazit E; Bonci T; Kirk C; Küderle A; Palmerini L; Paraschiv-Ionescu A; Salis F; Soltani A; Ullrich M; Alcock L; Aminian K; Becker C; Brown P; Buekers J; Carsin AE; Caruso M; Caulfield B; Cereatti A; Chiari L; Echevarria C; Eskofier B; Evers J; Garcia-Aymerich J; Hache T; Hansen C; Hausdorff JM; Hiden H; Hume E; Keogh A; Koch S; Maetzler W; Megaritis D; Niessen M; Perlman O; Schwickert L; Scott K; Sharrack B; Singleton D; Vereijken B; Vogiatzis I; Yarnall A; Rochester L; Mazzà C; Del Din S; Mueller A
    JMIR Form Res; 2024 May; 8():e50035. PubMed ID: 38691395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What features of the built environment matter most for mobility? Using wearable sensors to capture real-time outdoor environment demand on gait performance.
    Twardzik E; Duchowny K; Gallagher A; Alexander N; Strasburg D; Colabianchi N; Clarke P
    Gait Posture; 2019 Feb; 68():437-442. PubMed ID: 30594872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wearable Sensor-Based Step Length Estimation During Overground Locomotion Using a Deep Convolutional Neural Network.
    Jin H; Kang I; Choi G; Molinaro DD; Young AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4897-4900. PubMed ID: 34892306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous Digital Monitoring of Walking Speed in Frail Elderly Patients: Noninterventional Validation Study and Longitudinal Clinical Trial.
    Mueller A; Hoefling HA; Muaremi A; Praestgaard J; Walsh LC; Bunte O; Huber RM; Fürmetz J; Keppler AM; Schieker M; Böcker W; Roubenoff R; Brachat S; Rooks DS; Clay I
    JMIR Mhealth Uhealth; 2019 Nov; 7(11):e15191. PubMed ID: 31774406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Running Speed Estimation Using Shoe-Worn Inertial Sensors: Direct Integration, Linear, and Personalized Model.
    Falbriard M; Soltani A; Aminian K
    Front Sports Act Living; 2021; 3():585809. PubMed ID: 33817632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database.
    Khandelwal S; Wickström N
    Gait Posture; 2017 Jan; 51():84-90. PubMed ID: 27736735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An evaluation of measurement systems estimating gait speed during a loaded military march over graded terrain.
    Veenstra BJ; Wyss T; Roos L; Delves SK; Buller M; Beeler N
    Gait Posture; 2018 Mar; 61():204-209. PubMed ID: 29413785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-world gait speed estimation, frailty and handgrip strength: a cohort-based study.
    Soltani A; Abolhassani N; Marques-Vidal P; Aminian K; Vollenweider P; Paraschiv-Ionescu A
    Sci Rep; 2021 Sep; 11(1):18966. PubMed ID: 34556721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Walking-speed estimation using a single inertial measurement unit for the older adults.
    Byun S; Lee HJ; Han JW; Kim JS; Choi E; Kim KW
    PLoS One; 2019; 14(12):e0227075. PubMed ID: 31877181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Algorithms for Walking Speed Estimation Using a Lower-Back-Worn Inertial Sensor: A Cross-Validation on Speed Ranges.
    Soltani A; Aminian K; Mazza C; Cereatti A; Palmerini L; Bonci T; Paraschiv-Ionescu A
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1955-1964. PubMed ID: 34506286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait regularity assessed by wearable sensors: Comparison between accelerometer and gyroscope data for different sensor locations and walking speeds in healthy subjects.
    Scalera GM; Ferrarin M; Rabuffetti M
    J Biomech; 2020 Dec; 113():110115. PubMed ID: 33221581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free-Living Gait Cadence Measured by Wearable Accelerometer: A Promising Alternative to Traditional Measures of Mobility for Assessing Fall Risk.
    Urbanek JK; Roth DL; Karas M; Wanigatunga AA; Mitchell CM; Juraschek SP; Cai Y; Appel LJ; Schrack JA
    J Gerontol A Biol Sci Med Sci; 2023 May; 78(5):802-810. PubMed ID: 35029661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Would a thermal sensor improve arm motion classification accuracy of a single wrist-mounted inertial device?
    Lui J; Menon C
    Biomed Eng Online; 2019 May; 18(1):53. PubMed ID: 31064354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward a Remote Assessment of Walking Bout and Speed: Application in Patients With Multiple Sclerosis.
    Atrsaei A; Dadashi F; Mariani B; Gonzenbach R; Aminian K
    IEEE J Biomed Health Inform; 2021 Nov; 25(11):4217-4228. PubMed ID: 33914688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A machine learning approach for gait speed estimation using skin-mounted wearable sensors: From healthy controls to individuals with multiple sclerosis.
    McGinnis RS; Mahadevan N; Moon Y; Seagers K; Sheth N; Wright JA; DiCristofaro S; Silva I; Jortberg E; Ceruolo M; Pindado JA; Sosnoff J; Ghaffari R; Patel S
    PLoS One; 2017; 12(6):e0178366. PubMed ID: 28570570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Walking-Speed-Adaptive Gait Phase Estimation for Wearable Robots.
    Choi S; Ko C; Kong K
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.