These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 31059461)

  • 41. Inertial sensor-based stride parameter calculation from gait sequences in geriatric patients.
    Rampp A; Barth J; Schülein S; Gaßmann KG; Klucken J; Eskofier BM
    IEEE Trans Biomed Eng; 2015 Apr; 62(4):1089-97. PubMed ID: 25389237
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Toward Using a Smartwatch to Monitor Frailty in a Hospital Setting: Using a Single Wrist-Wearable Sensor to Assess Frailty in Bedbound Inpatients.
    Lee H; Joseph B; Enriquez A; Najafi B
    Gerontology; 2018; 64(4):389-400. PubMed ID: 29176316
    [TBL] [Abstract][Full Text] [Related]  

  • 43. IMU-Based Real-Time Estimation of Gait Phase Using Multi-Resolution Neural Networks.
    Tang L; Shushtari M; Arami A
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676007
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Validation of the ADAMO Care Watch for step counting in older adults.
    Magistro D; Brustio PR; Ivaldi M; Esliger DW; Zecca M; Rainoldi A; Boccia G
    PLoS One; 2018; 13(2):e0190753. PubMed ID: 29425196
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pedestrian Navigation Method Based on Machine Learning and Gait Feature Assistance.
    Zhou Z; Yang S; Ni Z; Qian W; Gu C; Cao Z
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164287
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Derivative Based Gait Event Detection Algorithm Using Unfiltered Accelerometer Signals.
    Escamilla-Nunez R; Aguilar L; Ng G; Gouda A; Andrysek J
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4487-4490. PubMed ID: 33018991
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Real-Life Gait Performance as a Digital Biomarker for Motor Fluctuations: The Parkinson@Home Validation Study.
    Evers LJ; Raykov YP; Krijthe JH; Silva de Lima AL; Badawy R; Claes K; Heskes TM; Little MA; Meinders MJ; Bloem BR
    J Med Internet Res; 2020 Oct; 22(10):e19068. PubMed ID: 33034562
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Validity and repeatability of inertial measurement units for measuring gait parameters.
    Washabaugh EP; Kalyanaraman T; Adamczyk PG; Claflin ES; Krishnan C
    Gait Posture; 2017 Jun; 55():87-93. PubMed ID: 28433867
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Estimation of Spatio-Temporal Parameters of Gait and Posture of Visually Impaired People Using Wearable Sensors.
    Reyes Leiva KM; Gato MÁC; Olmedo JJS
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420731
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of a gait speed estimation model for healthy older adults using a single inertial measurement unit.
    Lee HJ; Park JS; Bae JB; Han JW; Kim KW
    PLoS One; 2022; 17(10):e0275612. PubMed ID: 36201497
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Benefits of Multi-Constellation/Multi-Frequency GNSS in a Tightly Coupled GNSS/IMU/Odometry Integration Algorithm.
    Reuper B; Becker M; Leinen S
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30213078
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Accurate walking and running speed estimation using wrist inertial data.
    Bertschi M; Celka P; Delgado-Gonzalo R; Lemay M; Calvo EM; Grossenbacher O; Renevey P
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():8083-6. PubMed ID: 26738169
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Using Different Combinations of Body-Mounted IMU Sensors to Estimate Speed of Horses-A Machine Learning Approach.
    Darbandi H; Serra Bragança F; van der Zwaag BJ; Voskamp J; Gmel AI; Haraldsdóttir EH; Havinga P
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33530288
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gait speed estimation using Kalman Filtering on inertial measurement unit data.
    Alam MN; Khan Munia TT; Fazel-Rezai R
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2406-2409. PubMed ID: 29060383
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Classifier Personalization for Activity Recognition Using Wrist Accelerometers.
    Mannini A; Intille SS
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1585-1594. PubMed ID: 30222588
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Lean and Performant Hierarchical Model for Human Activity Recognition Using Body-Mounted Sensors.
    Debache I; Jeantet L; Chevallier D; Bergouignan A; Sueur C
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32486068
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Sensor Fusion Approach to the Estimation of Instantaneous Velocity Using Single Wearable Sensor During Sprint.
    Apte S; Meyer F; Gremeaux V; Dadashi F; Aminian K
    Front Bioeng Biotechnol; 2020; 8():838. PubMed ID: 33014992
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Consistent accuracy in whole-body joint kinetics during gait using wearable inertial motion sensors and in-shoe pressure sensors.
    Khurelbaatar T; Kim K; Lee S; Kim YH
    Gait Posture; 2015 Jun; 42(1):65-9. PubMed ID: 25957652
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Robust Step Detection Algorithm and Walking Distance Estimation Based on Daily Wrist Activity Recognition Using a Smart Band.
    Trong Bui D; Nguyen ND; Jeong GM
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29941842
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Real-Time Gait Event Detection with Adaptive Frequency Oscillators from a Single Head-Mounted IMU.
    Tomc M; Matjačić Z
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420666
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.