These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds. Theunissen FE; Sen K; Doupe AJ J Neurosci; 2000 Mar; 20(6):2315-31. PubMed ID: 10704507 [TBL] [Abstract][Full Text] [Related]
7. Nonlinearity of coding in primary auditory cortex of the awake ferret. Shechter B; Depireux DA Neuroscience; 2010 Jan; 165(2):612-20. PubMed ID: 19853021 [TBL] [Abstract][Full Text] [Related]
8. Stability of spectro-temporal tuning over several seconds in primary auditory cortex of the awake ferret. Shechter B; Depireux DA Neuroscience; 2007 Sep; 148(3):806-14. PubMed ID: 17693032 [TBL] [Abstract][Full Text] [Related]
9. Rapid synaptic depression explains nonlinear modulation of spectro-temporal tuning in primary auditory cortex by natural stimuli. David SV; Mesgarani N; Fritz JB; Shamma SA J Neurosci; 2009 Mar; 29(11):3374-86. PubMed ID: 19295144 [TBL] [Abstract][Full Text] [Related]
10. Cross-correlation and joint spectro-temporal receptive field properties in auditory cortex. Tomita M; Eggermont JJ J Neurophysiol; 2005 Jan; 93(1):378-92. PubMed ID: 15342718 [TBL] [Abstract][Full Text] [Related]
11. Context dependence of spectro-temporal receptive fields with implications for neural coding. Eggermont JJ Hear Res; 2011 Jan; 271(1-2):123-32. PubMed ID: 20123121 [TBL] [Abstract][Full Text] [Related]
12. Differences between spectro-temporal receptive fields derived from artificial and natural stimuli in the auditory cortex. Laudanski J; Edeline JM; Huetz C PLoS One; 2012; 7(11):e50539. PubMed ID: 23209771 [TBL] [Abstract][Full Text] [Related]
13. Sustained firing of model central auditory neurons yields a discriminative spectro-temporal representation for natural sounds. Carlin MA; Elhilali M PLoS Comput Biol; 2013; 9(3):e1002982. PubMed ID: 23555217 [TBL] [Abstract][Full Text] [Related]
14. Predictive Ensemble Decoding of Acoustical Features Explains Context-Dependent Receptive Fields. Yildiz IB; Mesgarani N; Deneve S J Neurosci; 2016 Dec; 36(49):12338-12350. PubMed ID: 27927954 [TBL] [Abstract][Full Text] [Related]
15. Network Receptive Field Modeling Reveals Extensive Integration and Multi-feature Selectivity in Auditory Cortical Neurons. Harper NS; Schoppe O; Willmore BD; Cui Z; Schnupp JW; King AJ PLoS Comput Biol; 2016 Nov; 12(11):e1005113. PubMed ID: 27835647 [TBL] [Abstract][Full Text] [Related]
16. Spectral tuning of adaptation supports coding of sensory context in auditory cortex. Lopez Espejo M; Schwartz ZP; David SV PLoS Comput Biol; 2019 Oct; 15(10):e1007430. PubMed ID: 31626624 [TBL] [Abstract][Full Text] [Related]
17. Spectrotemporal contrast kernels for neurons in primary auditory cortex. Rabinowitz NC; Willmore BD; Schnupp JW; King AJ J Neurosci; 2012 Aug; 32(33):11271-84. PubMed ID: 22895711 [TBL] [Abstract][Full Text] [Related]
18. Stimulus dependent transformations between synaptic and spiking receptive fields in auditory cortex. Kim KX; Atencio CA; Schreiner CE Nat Commun; 2020 Feb; 11(1):1102. PubMed ID: 32107370 [TBL] [Abstract][Full Text] [Related]
19. Gabor analysis of auditory midbrain receptive fields: spectro-temporal and binaural composition. Qiu A; Schreiner CE; Escabí MA J Neurophysiol; 2003 Jul; 90(1):456-76. PubMed ID: 12660353 [TBL] [Abstract][Full Text] [Related]
20. Stimulus-invariant processing and spectrotemporal reverse correlation in primary auditory cortex. Klein DJ; Simon JZ; Depireux DA; Shamma SA J Comput Neurosci; 2006 Apr; 20(2):111-36. PubMed ID: 16518572 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]