These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 31059643)

  • 1. Active Space Selection Based on Natural Orbital Occupation Numbers from n-Electron Valence Perturbation Theory.
    Khedkar A; Roemelt M
    J Chem Theory Comput; 2019 Jun; 15(6):3522-3536. PubMed ID: 31059643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient and stochastic multireference perturbation theory for large active spaces within a full configuration interaction quantum Monte Carlo framework.
    Anderson RJ; Shiozaki T; Booth GH
    J Chem Phys; 2020 Feb; 152(5):054101. PubMed ID: 32035465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exchange Coupling Interactions from the Density Matrix Renormalization Group and N-Electron Valence Perturbation Theory: Application to a Biomimetic Mixed-Valence Manganese Complex.
    Roemelt M; Krewald V; Pantazis DA
    J Chem Theory Comput; 2018 Jan; 14(1):166-179. PubMed ID: 29211960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extending the ASS1ST Active Space Selection Scheme to Large Molecules and Excited States.
    Khedkar A; Roemelt M
    J Chem Theory Comput; 2020 Aug; 16(8):4993-5005. PubMed ID: 32644789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient multireference perturbation theory without high-order reduced density matrices.
    Blunt NS; Mahajan A; Sharma S
    J Chem Phys; 2020 Oct; 153(16):164120. PubMed ID: 33138433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The density matrix renormalization group self-consistent field method: orbital optimization with the density matrix renormalization group method in the active space.
    Zgid D; Nooijen M
    J Chem Phys; 2008 Apr; 128(14):144116. PubMed ID: 18412432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SparseMaps--A systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital N-electron valence perturbation theory.
    Guo Y; Sivalingam K; Valeev EF; Neese F
    J Chem Phys; 2016 Mar; 144(9):094111. PubMed ID: 26957161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Externally-Contracted Multireference Configuration Interaction Method Using a DMRG Reference Wave Function.
    Luo Z; Ma Y; Wang X; Ma H
    J Chem Theory Comput; 2018 Sep; 14(9):4747-4755. PubMed ID: 30052433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic Selection of Active Orbitals from Generalized Valence Bond Orbitals.
    Zou J; Niu K; Ma H; Li S; Fang W
    J Phys Chem A; 2020 Oct; 124(40):8321-8329. PubMed ID: 32894939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-performance ab initio density matrix renormalization group method: applicability to large-scale multireference problems for metal compounds.
    Kurashige Y; Yanai T
    J Chem Phys; 2009 Jun; 130(23):234114. PubMed ID: 19548718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic Active Space Selection for Calculating Electronic Excitation Energies Based on High-Spin Unrestricted Hartree-Fock Orbitals.
    Bao JJ; Truhlar DG
    J Chem Theory Comput; 2019 Oct; 15(10):5308-5318. PubMed ID: 31411880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A projected approximation to strongly contracted N-electron valence perturbation theory for DMRG wavefunctions.
    Roemelt M; Guo S; Chan GK
    J Chem Phys; 2016 May; 144(20):204113. PubMed ID: 27250285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully Internally Contracted Multireference Configuration Interaction Theory Using Density Matrix Renormalization Group: A Reduced-Scaling Implementation Derived by Computer-Aided Tensor Factorization.
    Saitow M; Kurashige Y; Yanai T
    J Chem Theory Comput; 2015 Nov; 11(11):5120-31. PubMed ID: 26574310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems.
    Gagliardi L; Truhlar DG; Li Manni G; Carlson RK; Hoyer CE; Bao JL
    Acc Chem Res; 2017 Jan; 50(1):66-73. PubMed ID: 28001359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Second-order perturbation theory with a density matrix renormalization group self-consistent field reference function: theory and application to the study of chromium dimer.
    Kurashige Y; Yanai T
    J Chem Phys; 2011 Sep; 135(9):094104. PubMed ID: 21913750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of various natural orbitals as the basis of large active space density-matrix renormalization group calculations.
    Ma Y; Ma H
    J Chem Phys; 2013 Jun; 138(22):224105. PubMed ID: 23781781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining Internally Contracted States and Matrix Product States To Perform Multireference Perturbation Theory.
    Sharma S; Knizia G; Guo S; Alavi A
    J Chem Theory Comput; 2017 Feb; 13(2):488-498. PubMed ID: 28060507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-Electron Valence State Perturbation Theory Based on a Density Matrix Renormalization Group Reference Function, with Applications to the Chromium Dimer and a Trimer Model of Poly(p-Phenylenevinylene).
    Guo S; Watson MA; Hu W; Sun Q; Chan GK
    J Chem Theory Comput; 2016 Apr; 12(4):1583-91. PubMed ID: 26914415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kylin 1.0: An ab-initio density matrix renormalization group quantum chemistry program.
    Xie Z; Song Y; Peng F; Li J; Cheng Y; Zhang L; Ma Y; Tian Y; Luo Z; Ma H
    J Comput Chem; 2023 May; 44(13):1316-1328. PubMed ID: 36809661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection of active spaces for multiconfigurational wavefunctions.
    Keller S; Boguslawski K; Janowski T; Reiher M; Pulay P
    J Chem Phys; 2015 Jun; 142(24):244104. PubMed ID: 26133407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.