These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 31059799)

  • 21. Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials.
    Waytowich N; Lawhern VJ; Garcia JO; Cummings J; Faller J; Sajda P; Vettel JM
    J Neural Eng; 2018 Dec; 15(6):066031. PubMed ID: 30279309
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Independent component approach to the analysis of EEG and MEG recordings.
    Vigário R; Särelä J; Jousmäki V; Hämäläinen M; Oja E
    IEEE Trans Biomed Eng; 2000 May; 47(5):589-93. PubMed ID: 10851802
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Which physiological components are more suitable for visual ERP based brain-computer interface? A preliminary MEG/EEG study.
    Bianchi L; Sami S; Hillebrand A; Fawcett IP; Quitadamo LR; Seri S
    Brain Topogr; 2010 Jun; 23(2):180-5. PubMed ID: 20405196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Early auditory change detection implicitly facilitated by ignored concurrent visual change during a Braille reading task.
    Aoyama A; Haruyama T; Kuriki S
    J Integr Neurosci; 2013 Sep; 12(3):385-99. PubMed ID: 24070061
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A fresh look at functional link neural network for motor imagery-based brain-computer interface.
    Hettiarachchi IT; Babaei T; Nguyen T; Lim CP; Nahavandi S
    J Neurosci Methods; 2018 Jul; 305():28-35. PubMed ID: 29733940
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-trial classification of event-related potentials in rapid serial visual presentation tasks using supervised spatial filtering.
    Cecotti H; Eckstein MP; Giesbrecht B
    IEEE Trans Neural Netw Learn Syst; 2014 Nov; 25(11):2030-42. PubMed ID: 25330426
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the use of interaction error potentials for adaptive brain computer interfaces.
    Llera A; van Gerven MA; Gómez V; Jensen O; Kappen HJ
    Neural Netw; 2011 Dec; 24(10):1120-7. PubMed ID: 21696919
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sensitivity of EEG and MEG to the N1 and P2 auditory evoked responses modulated by spectral complexity of sounds.
    Shahin AJ; Roberts LE; Miller LM; McDonald KL; Alain C
    Brain Topogr; 2007; 20(2):55-61. PubMed ID: 17899352
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Learning Spatiotemporal Graph Representations for Visual Perception Using EEG Signals.
    Kalafatovich J; Lee M; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():97-108. PubMed ID: 36288219
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multimodal functional imaging using fMRI-informed regional EEG/MEG source estimation.
    Ou W; Nummenmaa A; Ahveninen J; Belliveau JW; Hämäläinen MS; Golland P
    Neuroimage; 2010 Aug; 52(1):97-108. PubMed ID: 20211266
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatiotemporal forward solution of the EEG and MEG using network modeling.
    Jirsa VK; Jantzen KJ; Fuchs A; Kelso JA
    IEEE Trans Med Imaging; 2002 May; 21(5):493-504. PubMed ID: 12071620
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Decoding Speech from Single Trial MEG Signals Using Convolutional Neural Networks and Transfer Learning.
    Dash D; Ferrari P; Heitzman D; Wang J
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5531-5535. PubMed ID: 31947107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A LightGBM-Based EEG Analysis Method for Driver Mental States Classification.
    Zeng H; Yang C; Zhang H; Wu Z; Zhang J; Dai G; Babiloni F; Kong W
    Comput Intell Neurosci; 2019; 2019():3761203. PubMed ID: 31611912
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Classification methods for ongoing EEG and MEG signals.
    Besserve M; Jerbi K; Laurent F; Baillet S; Martinerie J; Garnero L
    Biol Res; 2007; 40(4):415-37. PubMed ID: 18575676
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fast attainment of computer cursor control with noninvasively acquired brain signals.
    Bradberry TJ; Gentili RJ; Contreras-Vidal JL
    J Neural Eng; 2011 Jun; 8(3):036010. PubMed ID: 21493978
    [TBL] [Abstract][Full Text] [Related]  

  • 37. What is common to brain activity evoked by the perception of visual and auditory filled durations? A study with MEG and EEG co-recordings.
    N'Diaye K; Ragot R; Garnero L; Pouthas V
    Brain Res Cogn Brain Res; 2004 Oct; 21(2):250-68. PubMed ID: 15464356
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An MEG-based brain-computer interface (BCI).
    Mellinger J; Schalk G; Braun C; Preissl H; Rosenstiel W; Birbaumer N; Kübler A
    Neuroimage; 2007 Jul; 36(3):581-93. PubMed ID: 17475511
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy.
    Combrisson E; Jerbi K
    J Neurosci Methods; 2015 Jul; 250():126-36. PubMed ID: 25596422
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Decoding auditory attention from EEG using a convolutional neural network
    An WW; Pei A; Noyce AL; Shinn-Cunningham B
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6586-6589. PubMed ID: 34892618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.