These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
336 related articles for article (PubMed ID: 31059984)
1. Novel propyl karaya gum nanogels for bosentan: In vitro and in vivo drug delivery performance. Laha B; Das S; Maiti S; Sen KK Colloids Surf B Biointerfaces; 2019 Aug; 180():263-272. PubMed ID: 31059984 [TBL] [Abstract][Full Text] [Related]
2. Smart karaya-locust bean gum hydrogel particles for the treatment of hypertension: Optimization by factorial design and pre-clinical evaluation. Laha B; Goswami R; Maiti S; Sen KK Carbohydr Polym; 2019 Apr; 210():274-288. PubMed ID: 30732764 [TBL] [Abstract][Full Text] [Related]
3. Modified karaya gum colloidal particles for the management of systemic hypertension. Dhua M; Maiti S; Sen KK Int J Biol Macromol; 2020 Dec; 164():1889-1897. PubMed ID: 32768479 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and characterization of Schiff base containing bovine serum albumin-gum arabic aldehyde hybrid nanogels via inverse miniemulsion for delivery of anticancer drug. Bashiri G; Shojaosadati SA; Abdollahi M Int J Biol Macromol; 2021 Feb; 170():222-231. PubMed ID: 33359811 [TBL] [Abstract][Full Text] [Related]
5. Synthesis, characterization of thiolated karaya gum and evaluation of effect of pH on its mucoadhesive and sustained release properties. Bahulkar SS; Munot NM; Surwase SS Carbohydr Polym; 2015 Oct; 130():183-90. PubMed ID: 26076615 [TBL] [Abstract][Full Text] [Related]
6. pH responsive biodegradable nanogels for sustained release of bleomycin. Sahu P; Kashaw SK; Kushwah V; Sau S; Jain S; Iyer AK Bioorg Med Chem; 2017 Sep; 25(17):4595-4613. PubMed ID: 28734664 [TBL] [Abstract][Full Text] [Related]
7. Chemically crosslinked nanogels of PEGylated poly ethyleneimine (l-histidine substituted) synthesized via metal ion coordinated self-assembly for delivery of methotrexate: Cytocompatibility, cellular delivery and antitumor activity in resistant cells. Abolmaali SS; Tamaddon AM; Mohammadi S; Amoozgar Z; Dinarvand R Mater Sci Eng C Mater Biol Appl; 2016 May; 62():897-907. PubMed ID: 26952497 [TBL] [Abstract][Full Text] [Related]
8. Self-assembled lysozyme/carboxymethylcellulose nanogels for delivery of methotrexate. Li Z; Xu W; Zhang C; Chen Y; Li B Int J Biol Macromol; 2015 Apr; 75():166-72. PubMed ID: 25637692 [TBL] [Abstract][Full Text] [Related]
9. A Self-Skin Permeable Doxorubicin Loaded Nanogel Composite as a Transdermal Device for Breast Cancer Therapy. Mukkukada Ravi R; Mani A; Rahim S; Anirudhan TS ACS Appl Mater Interfaces; 2024 Sep; 16(38):50407-50429. PubMed ID: 39259941 [TBL] [Abstract][Full Text] [Related]
10. Comparison of nanogel drug carriers and their formulations with nucleoside 5'-triphosphates. Vinogradov SV; Kohli E; Zeman AD Pharm Res; 2006 May; 23(5):920-30. PubMed ID: 16715382 [TBL] [Abstract][Full Text] [Related]
11. Poly(ethylene glycol)-co-methacrylamide-co-acrylic acid based nanogels for delivery of doxorubicin. Kumar P; Behl G; Sikka M; Chhikara A; Chopra M J Biomater Sci Polym Ed; 2016 Oct; 27(14):1413-33. PubMed ID: 27383582 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of chitosan hydrochloride and carboxymethyl starch complex nanogels as potential delivery vehicles for curcumin. Li XM; Wu ZZ; Zhang B; Pan Y; Meng R; Chen HQ Food Chem; 2019 Sep; 293():197-203. PubMed ID: 31151601 [TBL] [Abstract][Full Text] [Related]
13. Self-assembled insulin and nanogels polyelectrolyte complex (Ins/NGs-PEC) for oral insulin delivery: characterization, lyophilization and in-vivo evaluation. Mudassir J; Darwis Y; Muhamad S; Khan AA Int J Nanomedicine; 2019; 14():4895-4909. PubMed ID: 31456636 [No Abstract] [Full Text] [Related]
14. Florfenicol core-shell composite nanogels as oral administration for efficient treatment of bacterial enteritis. Luo W; Liu J; Zhang M; Jiang Y; Sun B; Xie S; Sobhy Dawood A; Attia Algharib S; Gao X Int J Pharm; 2024 Sep; 662():124499. PubMed ID: 39033938 [TBL] [Abstract][Full Text] [Related]
15. Nanogel loaded with surfactant based nanovesicles for enhanced ocular delivery of acetazolamide. Abdel-Rashid RS; Helal DA; Omar MM; El Sisi AM Int J Nanomedicine; 2019; 14():2973-2983. PubMed ID: 31118616 [No Abstract] [Full Text] [Related]
16. Dual thermoresponsive and pH-responsive self-assembled micellar nanogel for anticancer drug delivery. Chen D; Yu H; Sun K; Liu W; Wang H Drug Deliv; 2014 Jun; 21(4):258-64. PubMed ID: 24102086 [TBL] [Abstract][Full Text] [Related]
17. Green-step assembly of low density lipoprotein/sodium carboxymethyl cellulose nanogels for facile loading and pH-dependent release of doxorubicin. He L; Liang H; Lin L; Shah BR; Li Y; Chen Y; Li B Colloids Surf B Biointerfaces; 2015 Feb; 126():288-96. PubMed ID: 25576811 [TBL] [Abstract][Full Text] [Related]
18. In vivo evaluation of modified gum karaya as a carrier for improving the oral bioavailability of a poorly water-soluble drug, nimodipine. Murali Mohan Babu GV; Kumar NR; Sankar KH; Ram BJ; Kumar NK; Murthy KV AAPS PharmSciTech; 2002; 3(2):E12. PubMed ID: 12916949 [TBL] [Abstract][Full Text] [Related]
19. Lysozyme-dextran core-shell nanogels prepared via a green process. Li J; Yu S; Yao P; Jiang M Langmuir; 2008 Apr; 24(7):3486-92. PubMed ID: 18302424 [TBL] [Abstract][Full Text] [Related]
20. Hyaluronic acid and hyaluronic acid: Sucrose nanogels for hydrophobic cancer drug delivery. Sagbas Suner S; Ari B; Onder FC; Ozpolat B; Ay M; Sahiner N Int J Biol Macromol; 2019 Apr; 126():1150-1157. PubMed ID: 30625351 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]