These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31060331)

  • 1. Polarization-Modulated, Goos⁻Hanchen Shift Sensing for Common Mode Drift Suppression.
    Wan Y; Cheng M; Zheng Z; Liu K
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31060331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct measurement of the Goos-Hänchen shift using a scanning quadrant detector and a polarization maintaining fiber.
    Yallapragada VJ; Mulay GL; Rao CN; Ravishankar AP; Achanta VG
    Rev Sci Instrum; 2016 Oct; 87(10):103109. PubMed ID: 27802693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nearly three orders of magnitude enhancement of Goos-Hanchen shift by exciting Bloch surface wave.
    Wan Y; Zheng Z; Kong W; Zhao X; Liu Y; Bian Y; Liu J
    Opt Express; 2012 Apr; 20(8):8998-9003. PubMed ID: 22513610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polarimetric-Phase-Enhanced Intensity Interrogation Scheme for Surface Wave Optical Sensors with Low Optical Loss.
    Wan Y; Zheng Z; Cheng M; Kong W; Liu K
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30274165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Weak measurement of magneto-optical Goos-Hänchen effect.
    Tang T; Li J; Luo L; Shen J; Li C; Qin J; Bi L; Hou J
    Opt Express; 2019 Jun; 27(13):17638-17647. PubMed ID: 31252720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Giant and highly reflective Goos-Hänchen shift in a metal-dielectric multilayer Fano structure.
    Saito H; Neo Y; Matsumoto T; Tomita M
    Opt Express; 2019 Sep; 27(20):28629-28639. PubMed ID: 31684611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Angular Goos-Hänchen Shift Sensor Using a Gold Film Enhanced by Surface Plasmon Resonance.
    Olaya CM; Hayazawa N; Hermosa N; Tanaka T
    J Phys Chem A; 2021 Jan; 125(1):451-458. PubMed ID: 33350831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical heterodyne sensor using the Goos-Hänchen shift.
    Hashimoto T; Yoshino T
    Opt Lett; 1989 Sep; 14(17):913-5. PubMed ID: 19753009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collinear heterodyne interferometer technique for measuring Goos-Hänchen shift.
    Zhang W; Zhang Z
    Appl Opt; 2018 Nov; 57(31):9346-9350. PubMed ID: 30461974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable and enhanced Goos-Hänchen shift via surface plasmon resonance assisted by a coherent medium.
    Wan RG; Zubairy MS
    Opt Express; 2020 Mar; 28(5):6036-6047. PubMed ID: 32225861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Sensitivity Goos-Hänchen Shifts Sensor Based on BlueP-TMDCs-Graphene Heterostructure.
    Han L; Hu Z; Pan J; Huang T; Luo D
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32604852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature controllable Goos-Hänchen shift and high reflectance of monolayer graphene induced by BK7 glass grating.
    Lu D; Shanshan M; Zhu X; Da H
    Nanotechnology; 2022 Sep; 33(48):. PubMed ID: 35994973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherent control of spatial and angular Goos-Hänchen shifts with spontaneously generated coherence and incoherent pumping.
    Shui T; Chen XM; Yang WX
    Appl Opt; 2022 Dec; 61(34):10072-10079. PubMed ID: 36606766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Giant negative Goos-Hänchen shifts for a photonic crystal with a negative effective index.
    He J; Yi J; He S
    Opt Express; 2006 Apr; 14(7):3024-9. PubMed ID: 19516442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Goos-Hänchen and Imbert-Fedorov shifts on hyperbolic crystals.
    Wang XG; Zhang YQ; Fu SF; Zhou S; Wang XZ
    Opt Express; 2020 Aug; 28(17):25048-25059. PubMed ID: 32907035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Giant Goos-Hänchen shifts in non-Hermitian dielectric multilayers incorporated with graphene.
    Zhao D; Ke S; Liu Q; Wang B; Lu P
    Opt Express; 2018 Feb; 26(3):2817-2828. PubMed ID: 29401817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarization beam splitting in a Glan-Taylor prism based on dual effects of both birefringence and Goos-Hanchen shift.
    Li D; Cai G; Song C; Weng C; Chen C; Zheng W; Zhang Y; Li K
    Heliyon; 2022 Nov; 8(11):e11754. PubMed ID: 36468144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple technique for measuring the Goos-Hänchen effect with polarization modulation and a position-sensitive detector.
    Gilles H; Girard S; Hamel J
    Opt Lett; 2002 Aug; 27(16):1421-3. PubMed ID: 18026466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adjustable enhanced Goos-Hänchen shift in a magneto-optic photonic crystal waveguide.
    Huang Y; Tang G; Chen J; Li ZY; Liang W
    Opt Express; 2022 Sep; 30(20):36478-36488. PubMed ID: 36258575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling Goos-Hänchen shifts due to the surface plasmon effect in a hybrid system.
    Solookinejad G; Jabbari M; Nafar M; Ahmadi E; Asadpour SH
    Appl Opt; 2018 Oct; 57(28):8193-8198. PubMed ID: 30461769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.