These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 31060781)
1. The comparison of retention behaviour of imidazoline and serotonin receptor ligands in non-aqueous hydrophilic interaction chromatography and supercritical fluid chromatography. Obradović D; Stavrianidi AN; Ustinovich KB; Parenago OO; Shpigun OA; Agbaba D J Chromatogr A; 2019 Oct; 1603():371-379. PubMed ID: 31060781 [TBL] [Abstract][Full Text] [Related]
2. Retention mechanisms of imidazoline and piperazine-related compounds in non-aqueous hydrophilic interaction and supercritical fluid chromatography based on chemometric design and analysis. Obradović D; Komsta Ł; Stavrianidi AN; Shpigun OA; Pokrovskiy OI; Vujić Z J Chromatogr A; 2022 Aug; 1678():463340. PubMed ID: 35905682 [TBL] [Abstract][Full Text] [Related]
3. Characterization and use of hydrophilic interaction liquid chromatography type stationary phases in supercritical fluid chromatography. West C; Khater S; Lesellier E J Chromatogr A; 2012 Aug; 1250():182-95. PubMed ID: 22647190 [TBL] [Abstract][Full Text] [Related]
4. Investigation and prediction of retention characteristics of imidazoline and serotonin receptor ligands and their related compounds on mixed-mode stationary phase. Obradović D; Oljačić S; Nikolić K; Agbaba D J Chromatogr A; 2019 Jan; 1585():92-104. PubMed ID: 30553503 [TBL] [Abstract][Full Text] [Related]
5. [Development progress of stationary phase for supercritical fluid chromatography and related application in natural products]. Song CY; Jin GW; Yu DP; Xia DH; Feng J; Guo ZM; Liang XM Se Pu; 2023 Oct; 41(10):866-878. PubMed ID: 37875409 [TBL] [Abstract][Full Text] [Related]
6. Comparison of Retention Behavior between Supercritical Fluid Chromatography and Normal-Phase High-Performance Liquid Chromatography with Various Stationary Phases. Hirose T; Keck D; Izumi Y; Bamba T Molecules; 2019 Jul; 24(13):. PubMed ID: 31269632 [TBL] [Abstract][Full Text] [Related]
7. An attempt to estimate ionic interactions with phenyl and pentafluorophenyl stationary phases in supercritical fluid chromatography. West C; Lemasson E; Khater S; Lesellier E J Chromatogr A; 2015 Sep; 1412():126-38. PubMed ID: 26278356 [TBL] [Abstract][Full Text] [Related]
8. Design, synthesis and evaluation of a series of alkylsiloxane-bonded stationary phases for expanded supercritical fluid chromatography separations. Fu Q; Jiang D; Xin H; Dai Z; Cai J; Ke Y; Jin Y; Liang X J Chromatogr A; 2019 May; 1593():127-134. PubMed ID: 30885402 [TBL] [Abstract][Full Text] [Related]
9. Effects of high concentrations of mobile phase additives on retention and separation mechanisms on a teicoplanin aglycone stationary phase in supercritical fluid chromatography. Raimbault A; West C J Chromatogr A; 2019 Oct; 1604():460494. PubMed ID: 31488292 [TBL] [Abstract][Full Text] [Related]
10. Placing supercritical fluid chromatography one step ahead of reversed-phase high performance liquid chromatography in the achiral purification arena: a hydrophilic interaction chromatography cross-linked diol chemistry as a new generic stationary phase. de la Puente ML; Soto-Yarritu PL; Anta C J Chromatogr A; 2012 Aug; 1250():172-81. PubMed ID: 22494643 [TBL] [Abstract][Full Text] [Related]
11. Chaotropic Effects in Sub/Supercritical Fluid Chromatography via Ammonium Hydroxide in Water-Rich Modifiers: Enabling Separation of Peptides and Highly Polar Pharmaceuticals at the Preparative Scale. Liu J; Makarov AA; Bennett R; Haidar Ahmad IA; DaSilva J; Reibarkh M; Mangion I; Mann BF; Regalado EL Anal Chem; 2019 Nov; 91(21):13907-13915. PubMed ID: 31549812 [TBL] [Abstract][Full Text] [Related]
12. Supercritical fluid chromatography-mass spectrometry using data independent acquisition for the analysis of polar metabolites in human urine. Akbal L; Hopfgartner G J Chromatogr A; 2020 Jan; 1609():460449. PubMed ID: 31443968 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of various chromatographic approaches for the retention of hydrophilic compounds and MS compatibility. Periat A; Grand-Guillaume Perrenoud A; Guillarme D J Sep Sci; 2013 Oct; 36(19):3141-51. PubMed ID: 23897590 [TBL] [Abstract][Full Text] [Related]
14. Analysis of polar urinary metabolites for metabolic phenotyping using supercritical fluid chromatography and mass spectrometry. Sen A; Knappy C; Lewis MR; Plumb RS; Wilson ID; Nicholson JK; Smith NW J Chromatogr A; 2016 Jun; 1449():141-55. PubMed ID: 27143232 [TBL] [Abstract][Full Text] [Related]
15. Characterization of stationary phases in supercritical fluid chromatography including exploration of shape selectivity. Gros Q; Molineau J; Noireau A; Duval J; Bamba T; Lesellier E; West C J Chromatogr A; 2021 Feb; 1639():461923. PubMed ID: 33524935 [TBL] [Abstract][Full Text] [Related]
16. Origin of the selectivity differences of aromatic alcohols and amines of different Kulsing C; Nolvachai Y; Matyska MT; Pesek JJ; Topete J; Boysen RI; Hearn MTW Anal Chim Acta X; 2019 Mar; 1():100003. PubMed ID: 33186417 [TBL] [Abstract][Full Text] [Related]
18. Screening strategies for achiral supercritical fluid chromatography employing hydrophilic interaction liquid chromatography-like parameters. Ashraf-Khorassani M; Taylor LT; Seest E J Chromatogr A; 2012 Mar; 1229():237-48. PubMed ID: 22305359 [TBL] [Abstract][Full Text] [Related]
19. Investigation of retention behavior of drug molecules in supercritical fluid chromatography using linear solvation energy relationships. Bui H; Masquelin T; Perun T; Castle T; Dage J; Kuo MS J Chromatogr A; 2008 Oct; 1206(2):186-95. PubMed ID: 18771773 [TBL] [Abstract][Full Text] [Related]
20. Ion exchange in supercritical fluid chromatography tandem mass spectrometry (SFC-MS/MS): Application for polar and ionic drugs and metabolites in forensic and anti-doping analysis. Xhaferaj M; Naegele E; Parr MK J Chromatogr A; 2020 Mar; 1614():460726. PubMed ID: 31787266 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]