These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31061270)

  • 1. Utility of Stack-of-stars Acquisition for Hepatobiliary Phase Imaging without Breath-holding.
    Ichikawa S; Motosugi U; Kromrey ML; Tamada D; Wakayama T; Wang K; Cashen TA; Ersoz A; Onishi H
    Magn Reson Med Sci; 2020 May; 19(2):99-107. PubMed ID: 31061270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Intra-individual Comparison between Free-breathing Dynamic MR Imaging of the Liver Using Stack-of-stars Acquisition and the Breath-holding Method Using Cartesian Sampling or View-sharing.
    Ichikawa S; Motosugi U; Wakayama T; Morisaka H; Funayama S; Tamada D; Wang K; Mandava S; Cashen TA; Onishi H
    Magn Reson Med Sci; 2023 Apr; 22(2):221-231. PubMed ID: 35296587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-breath-hold thin-slice gadoxetic acid-enhanced hepatobiliary MR imaging using a newly developed three-dimensional fast spoiled gradient-echo sequence.
    Hori M; Kim T; Onishi H; Takei N; Wakayama T; Sakane M; Dia AA; Tsuboyama T; Nakamoto A; Tatsumi M; Tomiyama N
    Magn Reson Imaging; 2016 May; 34(4):545-51. PubMed ID: 26747408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thin-slice Free-breathing Pseudo-golden-angle Radial Stack-of-stars with Gating and Tracking T
    Kajita K; Goshima S; Noda Y; Kawada H; Kawai N; Okuaki T; Honda M; Matsuo M
    Magn Reson Med Sci; 2019 Jan; 18(1):4-11. PubMed ID: 29526882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Navigated three-dimensional T1-weighted gradient-echo sequence for gadoxetic acid liver magnetic resonance imaging in patients with limited breath-holding capacity.
    Yoon JH; Lee JM; Lee ES; Baek J; Lee S; Iwadate Y; Han JK; Choi BI
    Abdom Imaging; 2015 Feb; 40(2):278-88. PubMed ID: 25112454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free-breathing contrast-enhanced upper abdominal MRI in children: comparison between Cartesian acquisition and stack-of-stars acquisition with two different fat-suppression techniques.
    Kim JR; Yoon HM; Cho YA; Lee JS; Jung AY
    Acta Radiol; 2021 Apr; 62(4):541-550. PubMed ID: 32498544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advantages of radial volumetric breath-hold examination (VIBE) with k-space weighted image contrast reconstruction (KWIC) over Cartesian VIBE in liver imaging of volunteers simulating inadequate or no breath-holding ability.
    Fujinaga Y; Kitou Y; Ohya A; Adachi Y; Tamaru N; Shiobara A; Ueda H; Nickel MD; Maruyama K; Kadoya M
    Eur Radiol; 2016 Aug; 26(8):2790-7. PubMed ID: 26601972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid Cartesian versus radial acquisition: comparison of two sequences for hepatobiliary phase MRI at 3 tesla in patients with impaired breath-hold capabilities.
    Budjan J; Riffel P; Ong MM; Schoenberg SO; Attenberger UI; Hausmann D
    BMC Med Imaging; 2017 May; 17(1):32. PubMed ID: 28486977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Liver Magnetic Resonance Imaging in Free-Breathing: Feasibility of a Cartesian T1-Weighted Acquisition Technique With Compressed Sensing and Additional Self-Navigation Signal for Hard-Gated and Motion-Resolved Reconstruction.
    Kaltenbach B; Bucher AM; Wichmann JL; Nickel D; Polkowski C; Hammerstingl R; Vogl TJ; Bodelle B
    Invest Radiol; 2017 Nov; 52(11):708-714. PubMed ID: 28622249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radial-based acquisition strategies for pre-procedural non-contrast cardiovascular magnetic resonance angiography of the pulmonary veins.
    Aouad P; Koktzoglou I; Milani B; Serhal A; Nazari J; Edelman RR
    J Cardiovasc Magn Reson; 2020 Nov; 22(1):78. PubMed ID: 33256791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pseudo-random Trajectory Scanning Suppresses Motion Artifacts on Gadoxetic Acid-enhanced Hepatobiliary-phase Magnetic Resonance Images.
    Nakamura Y; Higaki T; Nishihara T; Harada K; Takizawa M; Bito Y; Narita K; Akagi M; Matsubara Y; Kamioka S; Akiyama Y; Iida M; Awai K
    Magn Reson Med Sci; 2020 Feb; 19(1):21-28. PubMed ID: 30880292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shortened breath-hold contrast-enhanced MRI of the liver using a new parallel imaging technique, CAIPIRINHA (controlled aliasing in parallel imaging results in higher acceleration): a comparison with conventional GRAPPA technique.
    Ogawa M; Kawai T; Kan H; Kobayashi S; Akagawa Y; Suzuki K; Nojiri S; Ozawa Y; Shibamoto Y
    Abdom Imaging; 2015 Oct; 40(8):3091-8. PubMed ID: 26099474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hepatic Arterial Phase in Gadoxetic Acid-Enhanced Liver Magnetic Resonance Imaging: Analysis of Respiratory Patterns and Their Effect on Image Quality.
    Park YS; Lee CH; Yoo JL; Kim IS; Kiefer B; Woo ST; Kim KA; Park CM
    Invest Radiol; 2016 Feb; 51(2):127-33. PubMed ID: 26418367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient Respiratory-motion Artifact and Scan Timing during the Arterial Phase of Gadoxetate Disodium-enhanced MR Imaging: The Benefit of Shortened Acquisition and Multiple Arterial Phase Acquisition.
    Ichikawa S; Motosugi U; Sato K; Shimizu T; Wakayama T; Onishi H
    Magn Reson Med Sci; 2021 Sep; 20(3):280-289. PubMed ID: 32863326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free-breathing radial stack-of-stars three-dimensional Dixon gradient echo sequence in abdominal magnetic resonance imaging in sedated pediatric patients.
    Duffy PB; Stemmer A; Callahan MJ; Cravero JP; Johnston PR; Warfield SK; Bixby SD
    Pediatr Radiol; 2021 Aug; 51(9):1645-1653. PubMed ID: 33830291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical Feasibility of Free-Breathing Dynamic T1-Weighted Imaging With Gadoxetic Acid-Enhanced Liver Magnetic Resonance Imaging Using a Combination of Variable Density Sampling and Compressed Sensing.
    Yoon JH; Yu MH; Chang W; Park JY; Nickel MD; Son Y; Kiefer B; Lee JM
    Invest Radiol; 2017 Oct; 52(10):596-604. PubMed ID: 28492418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hepatobiliary phase imaging in cirrhotic patients using compressed sensing and controlled aliasing in parallel imaging results in higher acceleration.
    Yoon S; Shim YS; Park SH; Sung J; Nickel MD; Kim YJ; Lee HY; Kim HJ
    Eur Radiol; 2024 Apr; 34(4):2233-2243. PubMed ID: 37731096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility and Implementation of a 4D Free-Breathing Variable Density Stack-of-Stars Functional Magnetic Resonance Urography in Young Children Without Sedation.
    Spogis J; Katemann C; Zhang S; Esser M; Tsiflikas I; Schäfer J
    Invest Radiol; 2024 Mar; 59(3):271-277. PubMed ID: 37707861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contrast-enhanced free-breathing 3D T1-weighted gradient-echo sequence for hepatobiliary MRI in patients with breath-holding difficulties.
    Reiner CS; Neville AM; Nazeer HK; Breault S; Dale BM; Merkle EM; Bashir MR
    Eur Radiol; 2013 Nov; 23(11):3087-93. PubMed ID: 23732689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compressed sensing for breath-hold high-resolution hepatobiliary phase imaging: image noise, artifact, biliary anatomy evaluation, and focal lesion detection in comparison with parallel imaging.
    Choi MH; Kim B; Han D; Lee YJ
    Abdom Radiol (NY); 2022 Jan; 47(1):133-142. PubMed ID: 34591152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.