These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 31061517)

  • 1. Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators.
    Verre R; Baranov DG; Munkhbat B; Cuadra J; Käll M; Shegai T
    Nat Nanotechnol; 2019 Jul; 14(7):679-683. PubMed ID: 31061517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition metal dichalcogenide metaphotonic and self-coupled polaritonic platform grown by chemical vapor deposition.
    Shen F; Zhang Z; Zhou Y; Ma J; Chen K; Chen H; Wang S; Xu J; Chen Z
    Nat Commun; 2022 Sep; 13(1):5597. PubMed ID: 36151069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced excitation and emission from 2D transition metal dichalcogenides with all-dielectric nanoantennas.
    Lepeshov S; Krasnok A; Alù A
    Nanotechnology; 2019 Jun; 30(25):254004. PubMed ID: 30844774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High
    Randerson SA; Zotev PG; Hu X; Knight AJ; Wang Y; Nagarkar S; Hensman D; Wang Y; Tartakovskii AI
    ACS Nano; 2024 Jun; 18(25):16208-16221. PubMed ID: 38869002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directional radiation and photothermal effect enhanced control of 2D excitonic emission based on germanium nanoparticles.
    Yan J; Yu P; Ma C; Huang Y; Yang G
    Nanotechnology; 2020 Sep; 31(38):385201. PubMed ID: 32512556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanophotonics with 2D transition metal dichalcogenides [Invited].
    Krasnok A; Lepeshov S; Alú A
    Opt Express; 2018 Jun; 26(12):15972-15994. PubMed ID: 30114850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition metal dichalcogenide nanospheres for high-refractive-index nanophotonics and biomedical theranostics.
    Tselikov GI; Ermolaev GA; Popov AA; Tikhonowski GV; Panova DA; Taradin AS; Vyshnevyy AA; Syuy AV; Klimentov SM; Novikov SM; Evlyukhin AB; Kabashin AV; Arsenin AV; Novoselov KS; Volkov VS
    Proc Natl Acad Sci U S A; 2022 Sep; 119(39):e2208830119. PubMed ID: 36122203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable Resonance Coupling in Single Si Nanoparticle-Monolayer WS
    Lepeshov S; Wang M; Krasnok A; Kotov O; Zhang T; Liu H; Jiang T; Korgel B; Terrones M; Zheng Y; Alú A
    ACS Appl Mater Interfaces; 2018 May; 10(19):16690-16697. PubMed ID: 29651843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced light-matter interaction in two-dimensional transition metal dichalcogenides.
    Huang L; Krasnok A; Alú A; Yu Y; Neshev D; Miroshnichenko AE
    Rep Prog Phys; 2022 Mar; 85(4):. PubMed ID: 34939940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable Strong Coupling in Transition Metal Dichalcogenide Nanowires.
    Li J; Yao K; Huang Y; Fang J; Kollipara PS; Fan DE; Zheng Y
    Adv Mater; 2022 Aug; 34(34):e2200656. PubMed ID: 35793202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong light-matter interactions of exciton in bulk WS
    You S; Zhang Y; Fan M; Luo S; Zhou C
    Opt Lett; 2023 Mar; 48(6):1530-1533. PubMed ID: 36946970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical Control of Hybrid Monolayer Tungsten Disulfide-Plasmonic Nanoantenna Light-Matter States at Cryogenic and Room Temperatures.
    Munkhbat B; Baranov DG; Bisht A; Hoque MA; Karpiak B; Dash SP; Shegai T
    ACS Nano; 2020 Jan; 14(1):1196-1206. PubMed ID: 31904217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directional Modulation of Exciton Emission Using Single Dielectric Nanospheres.
    Fang J; Wang M; Yao K; Zhang T; Krasnok A; Jiang T; Choi J; Kahn E; Korgel BA; Terrones M; Li X; Alù A; Zheng Y
    Adv Mater; 2021 May; 33(20):e2007236. PubMed ID: 33837615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of Room-Temperature Exciton-Polariton Emission from Wide-Ranging 2D Semiconductors Coupled with a Broadband Mie Resonator.
    Fang J; Yao K; Wang M; Yu Z; Zhang T; Jiang T; Huang S; Korgel BA; Terrones M; Alù A; Zheng Y
    Nano Lett; 2023 Nov; 23(21):9803-9810. PubMed ID: 37879099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-hybridized exciton-polaritons in thin films of transition metal dichalcogenides for narrowband perfect absorption.
    Zong X; Li L; Li L; Yu K; Liu Y
    Opt Express; 2023 May; 31(11):18545-18554. PubMed ID: 37381564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition Metal Dichalcogenide Dimer Nanoantennas for Tailored Light-Matter Interactions.
    Zotev PG; Wang Y; Sortino L; Severs Millard T; Mullin N; Conteduca D; Shagar M; Genco A; Hobbs JK; Krauss TF; Tartakovskii AI
    ACS Nano; 2022 Apr; 16(4):6493-6505. PubMed ID: 35385647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong optical coupling in metallo-dielectric hybrid metasurfaces.
    Ravishankar AP; Vennberg F; Anand S
    Opt Express; 2022 Nov; 30(23):42512-44524. PubMed ID: 36366704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Room-Temperature Observation of Near-Intrinsic Exciton Linewidth in Monolayer WS
    Fang J; Yao K; Zhang T; Wang M; Jiang T; Huang S; Korgel BA; Terrones M; Alù A; Zheng Y
    Adv Mater; 2022 Apr; 34(15):e2108721. PubMed ID: 35170105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust tunable excitonic features in monolayer transition metal dichalcogenide quantum dots.
    Fouladi-Oskouei J; Shojaei S; Liu Z
    J Phys Condens Matter; 2018 Apr; 30(14):145301. PubMed ID: 29460851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid exciton-plasmon-polaritons in van der Waals semiconductor gratings.
    Zhang H; Abhiraman B; Zhang Q; Miao J; Jo K; Roccasecca S; Knight MW; Davoyan AR; Jariwala D
    Nat Commun; 2020 Jul; 11(1):3552. PubMed ID: 32669550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.