These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31062075)

  • 1. Parameter identification for a stochastic SEIRS epidemic model: case study influenza.
    Mummert A; Otunuga OM
    J Math Biol; 2019 Jul; 79(2):705-729. PubMed ID: 31062075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time forecasting of an epidemic using a discrete time stochastic model: a case study of pandemic influenza (H1N1-2009).
    Nishiura H
    Biomed Eng Online; 2011 Feb; 10():15. PubMed ID: 21324153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of epidemiological parameters for COVID-19 cases using a stochastic SEIRS epidemic model with vital dynamics.
    Otunuga OM
    Results Phys; 2021 Sep; 28():104664. PubMed ID: 34395184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictability in process-based ensemble forecast of influenza.
    Pei S; Cane MA; Shaman J
    PLoS Comput Biol; 2019 Feb; 15(2):e1006783. PubMed ID: 30817754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Individual versus superensemble forecasts of seasonal influenza outbreaks in the United States.
    Yamana TK; Kandula S; Shaman J
    PLoS Comput Biol; 2017 Nov; 13(11):e1005801. PubMed ID: 29107987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forecasting Epidemics Through Nonparametric Estimation of Time-Dependent Transmission Rates Using the SEIR Model.
    Smirnova A; deCamp L; Chowell G
    Bull Math Biol; 2019 Nov; 81(11):4343-4365. PubMed ID: 28466232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forecasting seasonal outbreaks of influenza.
    Shaman J; Karspeck A
    Proc Natl Acad Sci U S A; 2012 Dec; 109(50):20425-30. PubMed ID: 23184969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forecasting the 2017/2018 seasonal influenza epidemic in England using multiple dynamic transmission models: a case study.
    Birrell PJ; Zhang XS; Corbella A; van Leeuwen E; Panagiotopoulos N; Hoschler K; Elliot AJ; McGee M; Lusignan S; Presanis AM; Baguelin M; Zambon M; Charlett A; Pebody RG; Angelis D
    BMC Public Health; 2020 Apr; 20(1):486. PubMed ID: 32293372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forecasting the 2013-2014 influenza season using Wikipedia.
    Hickmann KS; Fairchild G; Priedhorsky R; Generous N; Hyman JM; Deshpande A; Del Valle SY
    PLoS Comput Biol; 2015 May; 11(5):e1004239. PubMed ID: 25974758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting seasonal influenza outbreaks with regime shift-informed dynamics for improved public health preparedness.
    Kim M; Kim Y; Nah K
    Sci Rep; 2024 Jun; 14(1):12698. PubMed ID: 38830955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influenza A and B epidemic criteria based on time-series analysis of health services surveillance data.
    Quénel P; Dab W
    Eur J Epidemiol; 1998 Apr; 14(3):275-85. PubMed ID: 9663521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate influenza forecasts using type-specific incidence data for small geographic units.
    Turtle J; Riley P; Ben-Nun M; Riley S
    PLoS Comput Biol; 2021 Jul; 17(7):e1009230. PubMed ID: 34324487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time influenza forecasts during the 2012-2013 season.
    Shaman J; Karspeck A; Yang W; Tamerius J; Lipsitch M
    Nat Commun; 2013; 4():2837. PubMed ID: 24302074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does homologous reinfection drive multiple-wave influenza outbreaks? Accounting for immunodynamics in epidemiological models.
    Camacho A; Cazelles B
    Epidemics; 2013 Dec; 5(4):187-96. PubMed ID: 24267875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accounting for cross-immunity can improve forecast accuracy during influenza epidemics.
    Sachak-Patwa R; Byrne HM; Thompson RN
    Epidemics; 2021 Mar; 34():100432. PubMed ID: 33360870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forecasting the spatial transmission of influenza in the United States.
    Pei S; Kandula S; Yang W; Shaman J
    Proc Natl Acad Sci U S A; 2018 Mar; 115(11):2752-2757. PubMed ID: 29483256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inducing Herd Immunity against Seasonal Influenza in Long-Term Care Facilities through Employee Vaccination Coverage: A Transmission Dynamics Model.
    Wendelboe AM; Grafe C; McCumber M; Anderson MP
    Comput Math Methods Med; 2015; 2015():178247. PubMed ID: 26101542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting routinely collected severe case data to monitor and predict influenza outbreaks.
    Corbella A; Zhang XS; Birrell PJ; Boddington N; Pebody RG; Presanis AM; De Angelis D
    BMC Public Health; 2018 Jun; 18(1):790. PubMed ID: 29940907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forecasting seasonal influenza-like illness in South Korea after 2 and 30 weeks using Google Trends and influenza data from Argentina.
    Choi SB; Ahn I
    PLoS One; 2020; 15(7):e0233855. PubMed ID: 32673312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies for pandemic and seasonal influenza vaccination of schoolchildren in the United States.
    Basta NE; Chao DL; Halloran ME; Matrajt L; Longini IM
    Am J Epidemiol; 2009 Sep; 170(6):679-86. PubMed ID: 19679750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.