These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
594 related articles for article (PubMed ID: 31062114)
1. Computer-Aided Detection of Incidental Lumbar Spine Fractures from Routine Dual-Energy X-Ray Absorptiometry (DEXA) Studies Using a Support Vector Machine (SVM) Classifier. Mehta SD; Sebro R J Digit Imaging; 2020 Feb; 33(1):204-210. PubMed ID: 31062114 [TBL] [Abstract][Full Text] [Related]
2. Random forest classifiers aid in the detection of incidental osteoblastic osseous metastases in DEXA studies. Mehta SD; Sebro R Int J Comput Assist Radiol Surg; 2019 May; 14(5):903-909. PubMed ID: 30852715 [TBL] [Abstract][Full Text] [Related]
3. Can a Deep-learning Model for the Automated Detection of Vertebral Fractures Approach the Performance Level of Human Subspecialists? Li YC; Chen HH; Horng-Shing Lu H; Hondar Wu HT; Chang MC; Chou PH Clin Orthop Relat Res; 2021 Jul; 479(7):1598-1612. PubMed ID: 33651768 [TBL] [Abstract][Full Text] [Related]
4. Detecting whether L1 or other lumbar levels would be excluded from DXA bone mineral density analysis during opportunistic CT screening for osteoporosis using machine learning. Sebro R; De la Garza-Ramos C; Peterson JJ Int J Comput Assist Radiol Surg; 2023 Dec; 18(12):2261-2272. PubMed ID: 37219803 [TBL] [Abstract][Full Text] [Related]
5. Opportunistic screening for osteoporosis and osteopenia from CT scans of the abdomen and pelvis using machine learning. Sebro R; De la Garza-Ramos C Eur Radiol; 2023 Mar; 33(3):1812-1823. PubMed ID: 36166085 [TBL] [Abstract][Full Text] [Related]
6. Development and validation of a radiomics-based model for predicting osteoporosis in patients with lumbar compression fractures. Nian S; Zhao Y; Li C; Zhu K; Li N; Li W; Chen J Spine J; 2024 Sep; 24(9):1625-1634. PubMed ID: 38679078 [TBL] [Abstract][Full Text] [Related]
7. Machine Learning for Diagnosis of Hematologic Diseases in Magnetic Resonance Imaging of Lumbar Spines. Hwang EJ; Jung JY; Lee SK; Lee SE; Jee WH Sci Rep; 2019 Apr; 9(1):6046. PubMed ID: 30988360 [TBL] [Abstract][Full Text] [Related]
8. Detecting Brain Tumor using Machines Learning Techniques Based on Different Features Extracting Strategies. Hussain L; Saeed S; Awan IA; Idris A; Nadeem MSA; Chaudhry QU Curr Med Imaging Rev; 2019; 15(6):595-606. PubMed ID: 32008569 [TBL] [Abstract][Full Text] [Related]
9. A reliable method for colorectal cancer prediction based on feature selection and support vector machine. Zhao D; Liu H; Zheng Y; He Y; Lu D; Lyu C Med Biol Eng Comput; 2019 Apr; 57(4):901-912. PubMed ID: 30478811 [TBL] [Abstract][Full Text] [Related]
10. Support vector machine model for diagnosing pneumoconiosis based on wavelet texture features of digital chest radiographs. Zhu B; Chen H; Chen B; Xu Y; Zhang K J Digit Imaging; 2014 Feb; 27(1):90-7. PubMed ID: 23836078 [TBL] [Abstract][Full Text] [Related]
11. SVM and SVM Ensembles in Breast Cancer Prediction. Huang MW; Chen CW; Lin WC; Ke SW; Tsai CF PLoS One; 2017; 12(1):e0161501. PubMed ID: 28060807 [TBL] [Abstract][Full Text] [Related]
12. Machine Learning for Opportunistic Screening for Osteoporosis from CT Scans of the Wrist and Forearm. Sebro R; De la Garza-Ramos C Diagnostics (Basel); 2022 Mar; 12(3):. PubMed ID: 35328244 [No Abstract] [Full Text] [Related]
13. Machine Learning for Opportunistic Screening for Osteoporosis and Osteopenia Using Knee CT Scans. Sebro R; Elmahdy M Can Assoc Radiol J; 2023 Nov; 74(4):676-687. PubMed ID: 36960893 [TBL] [Abstract][Full Text] [Related]
14. White box radial basis function classifiers with component selection for clinical prediction models. Van Belle V; Lisboa P Artif Intell Med; 2014 Jan; 60(1):53-64. PubMed ID: 24262978 [TBL] [Abstract][Full Text] [Related]
15. When should the doctor order a spine X-ray? Identifying vertebral fractures for osteoporosis care: results from the European Prospective Osteoporosis Study (EPOS). Kaptoge S; Armbrecht G; Felsenberg D; Lunt M; O'Neill TW; Silman AJ; Reeve J; J Bone Miner Res; 2004 Dec; 19(12):1982-93. PubMed ID: 15537441 [TBL] [Abstract][Full Text] [Related]
16. Feasibility of a generalized convolutional neural network for automated identification of vertebral compression fractures: The Manitoba Bone Mineral Density Registry. Monchka BA; Kimelman D; Lix LM; Leslie WD Bone; 2021 Sep; 150():116017. PubMed ID: 34020078 [TBL] [Abstract][Full Text] [Related]
17. Vicinal support vector classifier using supervised kernel-based clustering. Yang X; Cao A; Song Q; Schaefer G; Su Y Artif Intell Med; 2014 Mar; 60(3):189-96. PubMed ID: 24637294 [TBL] [Abstract][Full Text] [Related]
18. Data-driven diagnosis of spinal abnormalities using feature selection and machine learning algorithms. Raihan-Al-Masud M; Mondal MRH PLoS One; 2020; 15(2):e0228422. PubMed ID: 32027680 [TBL] [Abstract][Full Text] [Related]
19. Optimal training dataset composition for SVM-based, age-independent, automated epileptic seizure detection. Bogaarts JG; Gommer ED; Hilkman DM; van Kranen-Mastenbroek VH; Reulen JP Med Biol Eng Comput; 2016 Aug; 54(8):1285-93. PubMed ID: 27032931 [TBL] [Abstract][Full Text] [Related]
20. Vertebral fracture assessment by DXA is inferior to X-ray in clinical severe osteoporosis. Deleskog L; Laursen NĂ˜; Nielsen BR; Schwarz P Osteoporos Int; 2016 Jul; 27(7):2317-2326. PubMed ID: 26892040 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]