These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31062183)

  • 1. Use of waste canola oil as a low-cost substrate for rhamnolipid production using Pseudomonas aeruginosa.
    Pérez-Armendáriz B; Cal-Y-Mayor-Luna C; El-Kassis EG; Ortega-Martínez LD
    AMB Express; 2019 May; 9(1):61. PubMed ID: 31062183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of Crude Glycerol as a Substrate for the Production of Rhamnolipid by Pseudomonas aeruginosa.
    Eraqi WA; Yassin AS; Ali AE; Amin MA
    Biotechnol Res Int; 2016; 2016():3464509. PubMed ID: 26942014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production and Characterization of Rhamnolipids Produced by
    Maťátková O; Michailidu J; Ježdík R; Jarošová Kolouchová I; Řezanka T; Jirků V; Masák J
    Microorganisms; 2022 Jun; 10(7):. PubMed ID: 35888990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Medium factors on anaerobic production of rhamnolipids by Pseudomonas aeruginosa SG and a simplifying medium for in situ microbial enhanced oil recovery applications.
    Zhao F; Zhou J; Han S; Ma F; Zhang Y; Zhang J
    World J Microbiol Biotechnol; 2016 Apr; 32(4):54. PubMed ID: 26925616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization and characterization of rhamnolipid production by Pseudomonas aeruginosa NY3 using waste frying oil as the sole carbon.
    Sun H; Wang L; Nie H; Diwu Z; Nie M; Zhang B
    Biotechnol Prog; 2021 Jul; 37(4):e3155. PubMed ID: 33871921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-based rhamnolipids production and recovery from waste streams: Status and perspectives.
    Varjani S; Rakholiya P; Yong Ng H; Taherzadeh MJ; Hao Ngo H; Chang JS; Wong JWC; You S; Teixeira JA; Bui XT
    Bioresour Technol; 2021 Jan; 319():124213. PubMed ID: 33254448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D.
    George S; Jayachandran K
    J Appl Microbiol; 2013 Feb; 114(2):373-83. PubMed ID: 23164038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhamnolipid and surfactin production from olive oil mill waste as sole carbon source.
    Moya Ramírez I; Tsaousi K; Rudden M; Marchant R; Jurado Alameda E; García Román M; Banat IM
    Bioresour Technol; 2015 Dec; 198():231-6. PubMed ID: 26398666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of rhamnolipid biosurfactants produced by recombinant Pseudomonas aeruginosa strain DAB with removal of crude oil.
    He C; Dong W; Li J; Li Y; Huang C; Ma Y
    Biotechnol Lett; 2017 Sep; 39(9):1381-1388. PubMed ID: 28600649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization and scale-up of the production of rhamnolipid by Pseudomonas aeruginosa in solid-state fermentation using high-density polyurethane foam as an inert support.
    Gong Z; He Q; Che C; Liu J; Yang G
    Bioprocess Biosyst Eng; 2020 Mar; 43(3):385-392. PubMed ID: 31724063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of rhamnolipid production by Pseudomonas aeruginosa OG1 using waste frying oil and chicken feather peptone.
    Ozdal M; Gurkok S; Ozdal OG
    3 Biotech; 2017 Jun; 7(2):117. PubMed ID: 28567629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery.
    Amani H; Müller MM; Syldatk C; Hausmann R
    Appl Biochem Biotechnol; 2013 Jul; 170(5):1080-93. PubMed ID: 23640261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhamnolipid production by pseudomonas aeruginosa GIM 32 using different substrates including molasses distillery wastewater.
    Li AH; Xu MY; Sun W; Sun GP
    Appl Biochem Biotechnol; 2011 Mar; 163(5):600-11. PubMed ID: 20830582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhamnolipid production by
    Gaur S; Gupta S; Jha PN; Jain A
    Environ Technol; 2023 Sep; ():1-14. PubMed ID: 37682050
    [No Abstract]   [Full Text] [Related]  

  • 15. Microbial synthesis of rhamnolipids by Pseudomonas aeruginosa (ATCC 10145) on waste frying oil as low cost carbon source.
    Wadekar SD; Kale SB; Lali AM; Bhowmick DN; Pratap AP
    Prep Biochem Biotechnol; 2012; 42(3):249-66. PubMed ID: 22509850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of rhamnolipid production by Burkholderia glumae.
    Costa SG; Déziel E; Lépine F
    Lett Appl Microbiol; 2011 Dec; 53(6):620-7. PubMed ID: 21933203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Valorization of agro-industrial wastes towards the production of rhamnolipids.
    Gudiña EJ; Rodrigues AI; de Freitas V; Azevedo Z; Teixeira JA; Rodrigues LR
    Bioresour Technol; 2016 Jul; 212():144-150. PubMed ID: 27092993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two schemes for production of biosurfactant from Pseudomonas aeruginosa MR01: Applying residues from soybean oil industry and silica sol-gel immobilized cells.
    Bagheri Lotfabad T; Ebadipour N; Roostaazad R; Partovi M; Bahmaei M
    Colloids Surf B Biointerfaces; 2017 Apr; 152():159-168. PubMed ID: 28110037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosurfactant production by Pseudomonas aeruginosain kefir and fish meal.
    Kaskatepe B; Yildiz S; Gumustas M; Ozkan SA
    Braz J Microbiol; 2015; 46(3):855-9. PubMed ID: 26413070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximize rhamnolipid production with low foaming and high yield.
    Sodagari M; Invally K; Ju LK
    Enzyme Microb Technol; 2018 Mar; 110():79-86. PubMed ID: 29310859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.