These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31062308)

  • 1. Computational Tools for Quantifying Concordance in Single-Cell Fate.
    Cornwell JA; Nordon RE
    Methods Mol Biol; 2019; 1975():131-156. PubMed ID: 31062308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying intrinsic and extrinsic control of single-cell fates in cancer and stem/progenitor cell pedigrees with competing risks analysis.
    Cornwell JA; Hallett RM; der Mauer SA; Motazedian A; Schroeder T; Draper JS; Harvey RP; Nordon RE
    Sci Rep; 2016 Jun; 6():27100. PubMed ID: 27250534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating twin concordance for bivariate competing risks twin data.
    Scheike TH; Holst KK; Hjelmborg JB
    Stat Med; 2014 Mar; 33(7):1193-204. PubMed ID: 24132877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nongenetic origins of cell-to-cell variability in B lymphocyte proliferation.
    Mitchell S; Roy K; Zangle TA; Hoffmann A
    Proc Natl Acad Sci U S A; 2018 Mar; 115(12):E2888-E2897. PubMed ID: 29514960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hidden heterogeneity and circadian-controlled cell fate inferred from single cell lineages.
    Chakrabarti S; Paek AL; Reyes J; Lasick KA; Lahav G; Michor F
    Nat Commun; 2018 Dec; 9(1):5372. PubMed ID: 30560953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition states and cell fate decisions in epigenetic landscapes.
    Moris N; Pina C; Arias AM
    Nat Rev Genet; 2016 Nov; 17(11):693-703. PubMed ID: 27616569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CellRank for directed single-cell fate mapping.
    Lange M; Bergen V; Klein M; Setty M; Reuter B; Bakhti M; Lickert H; Ansari M; Schniering J; Schiller HB; Pe'er D; Theis FJ
    Nat Methods; 2022 Feb; 19(2):159-170. PubMed ID: 35027767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissecting transition cells from single-cell transcriptome data through multiscale stochastic dynamics.
    Zhou P; Wang S; Li T; Nie Q
    Nat Commun; 2021 Sep; 12(1):5609. PubMed ID: 34556644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional regulation of lineage commitment--a stochastic model of cell fate decisions.
    Teles J; Pina C; Edén P; Ohlsson M; Enver T; Peterson C
    PLoS Comput Biol; 2013; 9(8):e1003197. PubMed ID: 23990771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene Regulatory Networks from Single Cell Data for Exploring Cell Fate Decisions.
    Chan TE; Stumpf MPH; Babtie AC
    Methods Mol Biol; 2019; 1975():211-238. PubMed ID: 31062312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-cell entropy for accurate estimation of differentiation potency from a cell's transcriptome.
    Teschendorff AE; Enver T
    Nat Commun; 2017 Jun; 8():15599. PubMed ID: 28569836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trajectory Algorithms to Infer Stem Cell Fate Decisions.
    Lummertz da Rocha E; Malleshaiah M
    Methods Mol Biol; 2019; 1975():193-209. PubMed ID: 31062311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SCOUP: a probabilistic model based on the Ornstein-Uhlenbeck process to analyze single-cell expression data during differentiation.
    Matsumoto H; Kiryu H
    BMC Bioinformatics; 2016 Jun; 17(1):232. PubMed ID: 27277014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A computational strategy for predicting lineage specifiers in stem cell subpopulations.
    Okawa S; del Sol A
    Stem Cell Res; 2015 Sep; 15(2):427-34. PubMed ID: 26368290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lineage Inference and Stem Cell Identity Prediction Using Single-Cell RNA-Sequencing Data.
    Sagar ; Grün D
    Methods Mol Biol; 2019; 1975():277-301. PubMed ID: 31062315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating Cell Fate Decisions with ICGS Analysis of Single Cells.
    Salomonis N
    Methods Mol Biol; 2019; 1975():251-275. PubMed ID: 31062314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disparate individual fates compose robust CD8+ T cell immunity.
    Buchholz VR; Flossdorf M; Hensel I; Kretschmer L; Weissbrich B; Gräf P; Verschoor A; Schiemann M; Höfer T; Busch DH
    Science; 2013 May; 340(6132):630-5. PubMed ID: 23493420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concepts and limitations for learning developmental trajectories from single cell genomics.
    Tritschler S; Büttner M; Fischer DS; Lange M; Bergen V; Lickert H; Theis FJ
    Development; 2019 Jun; 146(12):. PubMed ID: 31249007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recording development with single cell dynamic lineage tracing.
    McKenna A; Gagnon JA
    Development; 2019 Jun; 146(12):. PubMed ID: 31249005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Hierarchical, Data-Driven Approach to Modeling Single-Cell Populations Predicts Latent Causes of Cell-To-Cell Variability.
    Loos C; Moeller K; Fröhlich F; Hucho T; Hasenauer J
    Cell Syst; 2018 May; 6(5):593-603.e13. PubMed ID: 29730254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.