BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 31062314)

  • 41. Enabling reproducible re-analysis of single-cell data.
    Skinnider MA; Squair JW; Courtine G
    Genome Biol; 2021 Jul; 22(1):215. PubMed ID: 34311752
    [No Abstract]   [Full Text] [Related]  

  • 42. Gene coexpression analysis in single cells indicates lymphomyeloid copriming in short-term hematopoietic stem cells and multipotent progenitors.
    Gautreau L; Boudil A; Pasqualetto V; Skhiri L; Grandin L; Monteiro M; Jais JP; Ezine S
    J Immunol; 2010 May; 184(9):4907-17. PubMed ID: 20368277
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Single Cell Explorer, collaboration-driven tools to leverage large-scale single cell RNA-seq data.
    Feng D; Whitehurst CE; Shan D; Hill JD; Yue YG
    BMC Genomics; 2019 Aug; 20(1):676. PubMed ID: 31455220
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Defining developmental diversification of diencephalon neurons through single cell gene expression profiling.
    Guo Q; Li JYH
    Development; 2019 Apr; 146(12):. PubMed ID: 30872278
    [TBL] [Abstract][Full Text] [Related]  

  • 45. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.
    Johnson BK; Scholz MB; Teal TK; Abramovitch RB
    BMC Bioinformatics; 2016 Feb; 17():66. PubMed ID: 26847232
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cross-platform single cell analysis of kidney development shows stromal cells express Gdnf.
    Magella B; Adam M; Potter AS; Venkatasubramanian M; Chetal K; Hay SB; Salomonis N; Potter SS
    Dev Biol; 2018 Feb; 434(1):36-47. PubMed ID: 29183737
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High Throughput Single Cell RNA Sequencing, Bioinformatics Analysis and Applications.
    Huang X; Liu S; Wu L; Jiang M; Hou Y
    Adv Exp Med Biol; 2018; 1068():33-43. PubMed ID: 29943294
    [TBL] [Abstract][Full Text] [Related]  

  • 48. HelPredictor models single-cell transcriptome to predict human embryo lineage allocation.
    Liang P; Zheng L; Long C; Yang W; Yang L; Zuo Y
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34037706
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Learning common and specific patterns from data of multiple interrelated biological scenarios with matrix factorization.
    Zhang L; Zhang S
    Nucleic Acids Res; 2019 Jul; 47(13):6606-6617. PubMed ID: 31175825
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Creating Lineage Trajectory Maps Via Integration of Single-Cell RNA-Sequencing and Lineage Tracing: Integrating transgenic lineage tracing and single-cell RNA-sequencing is a robust approach for mapping developmental lineage trajectories and cell fate changes.
    Fletcher RB; Das D; Ngai J
    Bioessays; 2018 Aug; 40(8):e1800056. PubMed ID: 29944188
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Clonal analysis of lineage fate in native haematopoiesis.
    Rodriguez-Fraticelli AE; Wolock SL; Weinreb CS; Panero R; Patel SH; Jankovic M; Sun J; Calogero RA; Klein AM; Camargo FD
    Nature; 2018 Jan; 553(7687):212-216. PubMed ID: 29323290
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identifying gene expression from single cells to single genes.
    Oulhen N; Foster S; Wray G; Wessel G
    Methods Cell Biol; 2019; 151():127-158. PubMed ID: 30948004
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Computational approaches for high-throughput single-cell data analysis.
    Todorov H; Saeys Y
    FEBS J; 2019 Apr; 286(8):1451-1467. PubMed ID: 30058136
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Single-Cell RNA Sequencing of Human T Cells.
    Villani AC; Shekhar K
    Methods Mol Biol; 2017; 1514():203-239. PubMed ID: 27787803
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain.
    Saunders A; Macosko EZ; Wysoker A; Goldman M; Krienen FM; de Rivera H; Bien E; Baum M; Bortolin L; Wang S; Goeva A; Nemesh J; Kamitaki N; Brumbaugh S; Kulp D; McCarroll SA
    Cell; 2018 Aug; 174(4):1015-1030.e16. PubMed ID: 30096299
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A statistical approach for identifying differential distributions in single-cell RNA-seq experiments.
    Korthauer KD; Chu LF; Newton MA; Li Y; Thomson J; Stewart R; Kendziorski C
    Genome Biol; 2016 Oct; 17(1):222. PubMed ID: 27782827
    [TBL] [Abstract][Full Text] [Related]  

  • 57. RNA Tomography for Spatially Resolved Transcriptomics (Tomo-Seq).
    Holler K; Junker JP
    Methods Mol Biol; 2019; 1920():129-141. PubMed ID: 30737690
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Single-Cell Transcriptome Analysis Using SINCERA Pipeline.
    Guo M; Xu Y
    Methods Mol Biol; 2018; 1751():209-222. PubMed ID: 29508300
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Global transcriptome analysis reveals extensive gene remodeling, alternative splicing and differential transcription profiles in non-seed vascular plant Selaginella moellendorffii.
    Zhu Y; Chen L; Zhang C; Hao P; Jing X; Li X
    BMC Genomics; 2017 Jan; 18(Suppl 1):1042. PubMed ID: 28198676
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Advancing haematopoietic stem and progenitor cell biology through single-cell profiling.
    Hamey FK; Nestorowa S; Wilson NK; Göttgens B
    FEBS Lett; 2016 Nov; 590(22):4052-4067. PubMed ID: 27259698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.