BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 31062314)

  • 61. Discovering sparse transcription factor codes for cell states and state transitions during development.
    Furchtgott LA; Melton S; Menon V; Ramanathan S
    Elife; 2017 Mar; 6():. PubMed ID: 28296636
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Single-Cell Transcriptomic Analysis of Tumor Heterogeneity.
    Levitin HM; Yuan J; Sims PA
    Trends Cancer; 2018 Apr; 4(4):264-268. PubMed ID: 29606308
    [TBL] [Abstract][Full Text] [Related]  

  • 63. GiniClust: detecting rare cell types from single-cell gene expression data with Gini index.
    Jiang L; Chen H; Pinello L; Yuan GC
    Genome Biol; 2016 Jul; 17(1):144. PubMed ID: 27368803
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Single-Cell Analysis Reveals Regulatory Gene Expression Dynamics Leading to Lineage Commitment in Early T Cell Development.
    Zhou W; Yui MA; Williams BA; Yun J; Wold BJ; Cai L; Rothenberg EV
    Cell Syst; 2019 Oct; 9(4):321-337.e9. PubMed ID: 31629685
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Computational and analytical challenges in single-cell transcriptomics.
    Stegle O; Teichmann SA; Marioni JC
    Nat Rev Genet; 2015 Mar; 16(3):133-45. PubMed ID: 25628217
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Defining multistep cell fate decision pathways during pancreatic development at single-cell resolution.
    Yu XX; Qiu WL; Yang L; Zhang Y; He MY; Li LC; Xu CR
    EMBO J; 2019 Apr; 38(8):. PubMed ID: 30737258
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Concepts and limitations for learning developmental trajectories from single cell genomics.
    Tritschler S; Büttner M; Fischer DS; Lange M; Bergen V; Lickert H; Theis FJ
    Development; 2019 Jun; 146(12):. PubMed ID: 31249007
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Transcript Profiling Using Long-Read Sequencing Technologies.
    Bayega A; Wang YC; Oikonomopoulos S; Djambazian H; Fahiminiya S; Ragoussis J
    Methods Mol Biol; 2018; 1783():121-147. PubMed ID: 29767360
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Molecular transitions in early progenitors during human cord blood hematopoiesis.
    Zheng S; Papalexi E; Butler A; Stephenson W; Satija R
    Mol Syst Biol; 2018 Mar; 14(3):e8041. PubMed ID: 29545397
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Computational methods for the integrative analysis of single-cell data.
    Forcato M; Romano O; Bicciato S
    Brief Bioinform; 2021 Jan; 22(1):20-29. PubMed ID: 32363378
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Visual Genomics Analysis Studio as a Tool to Analyze Multiomic Data.
    Hertzman RJ; Deshpande P; Leary S; Li Y; Ram R; Chopra A; Cooper D; Watson M; Palubinsky AM; Mallal S; Gibson A; Phillips EJ
    Front Genet; 2021; 12():642012. PubMed ID: 34220932
    [TBL] [Abstract][Full Text] [Related]  

  • 72. RNA-Seq for transcriptome analysis in non-model plants.
    Garg R; Jain M
    Methods Mol Biol; 2013; 1069():43-58. PubMed ID: 23996307
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Single-cell RNA sequencing reveals developmental heterogeneity among early lymphoid progenitors.
    Alberti-Servera L; von Muenchow L; Tsapogas P; Capoferri G; Eschbach K; Beisel C; Ceredig R; Ivanek R; Rolink A
    EMBO J; 2017 Dec; 36(24):3619-3633. PubMed ID: 29030486
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data.
    Chen S; Mar JC
    BMC Bioinformatics; 2018 Jun; 19(1):232. PubMed ID: 29914350
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The Use of the Fluidigm C1 for RNA Expression Analyses of Single Cells.
    DeLaughter DM
    Curr Protoc Mol Biol; 2018 Apr; 122(1):e55. PubMed ID: 29851244
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Diffusion maps for high-dimensional single-cell analysis of differentiation data.
    Haghverdi L; Buettner F; Theis FJ
    Bioinformatics; 2015 Sep; 31(18):2989-98. PubMed ID: 26002886
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Single-Cell RNA Sequencing of Glioblastoma Cells.
    Sen R; Dolgalev I; Bayin NS; Heguy A; Tsirigos A; Placantonakis DG
    Methods Mol Biol; 2018; 1741():151-170. PubMed ID: 29392698
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Deciphering driver regulators of cell fate decisions from single-cell transcriptomics data with CEFCON.
    Wang P; Wen X; Li H; Lang P; Li S; Lei Y; Shu H; Gao L; Zhao D; Zeng J
    Nat Commun; 2023 Dec; 14(1):8459. PubMed ID: 38123534
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Cell population structure prior to bifurcation predicts efficiency of directed differentiation in human induced pluripotent cells.
    Bargaje R; Trachana K; Shelton MN; McGinnis CS; Zhou JX; Chadick C; Cook S; Cavanaugh C; Huang S; Hood L
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):2271-2276. PubMed ID: 28167799
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.