BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31062438)

  • 1. Modulation of Kinetic Pathways of Enzyme-Substrate Interaction in a Microfluidic Channel: Nanoscopic Water Dynamics as a Switch.
    Singh P; Mukherjee D; Singha S; Das R; Pal SK
    Chemistry; 2019 Jul; 25(41):9728-9736. PubMed ID: 31062438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate effects on the enzymatic activity of alpha-chymotrypsin in reverse micelles.
    Mao Q; Walde P
    Biochem Biophys Res Commun; 1991 Aug; 178(3):1105-12. PubMed ID: 1872834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reverse micelles as a water-property-control system to investigate the hydration/activity relationship of alpha-chymotrypsin.
    Dorovska-Taran V; Veeger C; Visser AJ
    Eur J Biochem; 1993 Dec; 218(3):1013-9. PubMed ID: 8281919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elucidation of active site dynamics of papain and the effect of encapsulation within cationic and anionic reverse micelles.
    Mohan V; Sen P
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jul; 200():202-211. PubMed ID: 29694928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cationic reverse micelles create water with super hydrogen-bond-donor capacity for enzymatic catalysis: hydrolysis of 2-naphthyl acetate by alpha-chymotrypsin.
    Moyano F; Falcone RD; Mejuto JC; Silber JJ; Correa NM
    Chemistry; 2010 Aug; 16(29):8887-93. PubMed ID: 20572177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein-protein interactions in reverse micelles: trypsin shows superactivity towards a protein substrate alpha-chymotrypsinogen A in reverse micelles of sodium bis(2-ethylhexyl)sulfosuccinate (AOT) in isooctane.
    Fadnavis NW; Chandraprakash Y; Deshpande A
    Biochimie; 1993; 75(11):995-9. PubMed ID: 7510131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of environmental dynamics at the active site and activity of an enzyme under nanoscopic confinement: Subtilisin Carlsberg in anionic AOT reverse micelle.
    Rakshit S; Saha R; Pal SK
    J Phys Chem B; 2013 Oct; 117(39):11565-74. PubMed ID: 24004033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of dynamics and reactivity of water in reverse micelles of mixed surfactants.
    Mitra RK; Sinha SS; Verma PK; Pal SK
    J Phys Chem B; 2008 Oct; 112(41):12946-53. PubMed ID: 18808089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability and activity modulation of chymotrypsins in AOT reversed micelles by protein-interface interaction: interaction of alpha-chymotrypsin with a negative interface leads to a cooperative breakage of a salt bridge that keeps the catalytic active conformation (Ile16-Asp194).
    Almeida FC; Valente AP; Chaimovich H
    Biotechnol Bioeng; 1998 Aug; 59(3):360-3. PubMed ID: 10099347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast dynamics in a nanocage of enzymes: solvation and fluorescence resonance energy transfer in reverse micelles.
    Majumder P; Sarkar R; Shaw AK; Chakraborty A; Pal SK
    J Colloid Interface Sci; 2005 Oct; 290(2):462-74. PubMed ID: 15939425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Product inhibition of alpha-chymotrypsin in reverse micelles.
    Bru R; Walde P
    Eur J Biochem; 1991 Jul; 199(1):95-103. PubMed ID: 1712303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-cofactor binding and ultrafast electron transfer in riboflavin binding protein under the spatial confinement of nanoscopic reverse micelles.
    Saha R; Rakshit S; Verma PK; Mitra RK; Pal SK
    J Mol Recognit; 2013 Feb; 26(2):59-66. PubMed ID: 23334913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensing micelle hydration by proton-transfer dynamics of a 3-hydroxychromone dye: role of the surfactant headgroup and chain length.
    Das R; Duportail G; Richert L; Klymchenko A; Mély Y
    Langmuir; 2012 May; 28(18):7147-59. PubMed ID: 22515420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and catalytic properties of enzymes in reverse micelles.
    Creagh AL; Prausnitz JM; Blanch HW
    Enzyme Microb Technol; 1993 May; 15(5):383-92. PubMed ID: 7684231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The location of tryptophan, N-acetyltryptophan and alpha-chymotrypsin in reverse micelles of AOT: a fluorescence study.
    Andrade SM; Costa SM
    Photochem Photobiol; 2000 Oct; 72(4):444-50. PubMed ID: 11045712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of excited-state proton-transfer reactions of 7-hydroxy-4-methylcoumarin in ionic and nonionic reverse micelles.
    Choudhury SD; Pal H
    J Phys Chem B; 2009 May; 113(19):6736-44. PubMed ID: 19374362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A procedure for the joint evaluation of substrate partitioning and kinetic parameters for reactions catalyzed by enzymes in reverse micellar solutions. I. Hydrolysis of 2-naphthyl acetate catalyzed by lipase in sodium 1,4-bis(2-ethylhexyl) sulphosuccinate (AOT)/buffer/heptane.
    Aguilar LF; Abuin E; Lissi E
    Arch Biochem Biophys; 2001 Apr; 388(2):231-6. PubMed ID: 11368159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Catalytic Activity of α-Chymotrypsin in Cationic Surfactant Solutions: The Component Specificity Revisited.
    Patra A; Samanta N; Das DK; Mitra RK
    J Phys Chem B; 2017 Feb; 121(7):1457-1465. PubMed ID: 28151666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of the photophysical behavior of fisetin in homogeneous media and in anionic and cationic reverse micelles media.
    Funes M; Correa NM; Silber JJ; Biasutti A
    Photochem Photobiol; 2007; 83(3):486-93. PubMed ID: 17115801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilized enzymes in reverse micelles: studies with gel-entrapped trypsin and alpha-chymotrypsin in AOT reverse micelles.
    Fadnavis NW; Luisi PL
    Biotechnol Bioeng; 1989 Apr; 33(10):1277-82. PubMed ID: 18587860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.