These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31062438)

  • 21. Ultrafast surface solvation dynamics and functionality of an enzyme alpha-chymotrypsin upon interfacial binding to a cationic micelle.
    Sarkar R; Ghosh M; Shaw AK; Pal SK
    J Photochem Photobiol B; 2005 Apr; 79(1):67-78. PubMed ID: 15792881
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic behaviour of alpha-chymotrypsin in reverse micelles. A stopped-flow study.
    Mao Q; Walde P; Luisi PL
    Eur J Biochem; 1992 Aug; 208(1):165-70. PubMed ID: 1511684
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of multifunctional reverse micelles' interfaces using hemicyanines as molecular probes. II: Effect of the surfactant.
    Quintana SS; Moyano F; Falcone RD; Silber JJ; Correa NM
    J Phys Chem B; 2009 May; 113(19):6718-24. PubMed ID: 19378960
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure and activity of trypsin in reverse micelles.
    Walde P; Peng Q; Fadnavis NW; Battistel E; Luisi PL
    Eur J Biochem; 1988 Apr; 173(2):401-9. PubMed ID: 3360018
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Superactivity and conformational changes on alpha-chymotrypsin upon interfacial binding to cationic micelles.
    Celej MS; D'Andrea MG; Campana PT; Fidelio GD; Bianconi ML
    Biochem J; 2004 Mar; 378(Pt 3):1059-66. PubMed ID: 14641111
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The influence of charge on the structure and dynamics of water encapsulated in reverse micelles.
    Patra A; Luong TQ; Mitra RK; Havenith M
    Phys Chem Chem Phys; 2014 Jul; 16(25):12875-83. PubMed ID: 24848870
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Local chemistry of the surfactant's head groups determines protein stability in reverse micelles.
    Senske M; Xu Y; Bäumer A; Schäfer S; Wirtz H; Savolainen J; Weingärtner H; Havenith M
    Phys Chem Chem Phys; 2018 Mar; 20(13):8515-8522. PubMed ID: 29537025
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temperature-dependent solvation dynamics of water in sodium bis(2-ethylhexyl)sulfosuccinate/isooctane reverse micelles.
    Mitra RK; Sinha SS; Pal SK
    Langmuir; 2008 Jan; 24(1):49-56. PubMed ID: 18044942
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activity and spectroscopic properties of bovine liver catalase in sodium bis(2-ethylhexyl)sulfosuccinate/isooctane reverse micelles.
    Haber J; Maślakiewicz P; Rodakiewicz-Nowak J; Walde P
    Eur J Biochem; 1993 Oct; 217(2):567-73. PubMed ID: 7693463
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electronic excited-state behavior of rhodamine 3B in AOT reverse micelles sensing contact ion pair to solvent separated ion pair interconversion.
    Ferreira JA; Costa SM
    J Phys Chem B; 2010 Aug; 114(32):10417-26. PubMed ID: 20666438
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonionic surfactants: a key to enhance the enzyme activity at cationic reverse micellar interface.
    Shome A; Roy S; Das PK
    Langmuir; 2007 Apr; 23(8):4130-6. PubMed ID: 17348695
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reverse micellar aggregates: effect on ketone reduction. 2. Surfactant role.
    Correa NM; Zorzan DH; D'Anteo L; Lasta E; Chiarini M; Cerichelli G
    J Org Chem; 2004 Nov; 69(24):8231-8. PubMed ID: 15549792
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dissociation of pigeon-liver malic enzyme in reverse micelles.
    Chang GG; Huang TM; Huang SM; Chou WY
    Eur J Biochem; 1994 Nov; 225(3):1021-7. PubMed ID: 7525283
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring the role of hydration and confinement in the aggregation of amyloidogenic peptides Aβ(16-22) and Sup35(7-13) in AOT reverse micelles.
    Martinez AV; Małolepsza E; Rivera E; Lu Q; Straub JE
    J Chem Phys; 2014 Dec; 141(22):22D530. PubMed ID: 25494801
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct Observation of Coupling between Structural Fluctuation and Ultrafast Hydration Dynamics of Fluorescent Probes in Anionic Micelles.
    Choudhury S; Mondal PK; Sharma VK; Mitra S; Sakai VG; Mukhopadhyay R; Pal SK
    J Phys Chem B; 2015 Aug; 119(34):10849-57. PubMed ID: 25874585
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of hydration on the functionality of a proteolytic enzyme α-chymotrypsin under crowded environment.
    Verma PK; Rakshit S; Mitra RK; Pal SK
    Biochimie; 2011 Sep; 93(9):1424-33. PubMed ID: 21549802
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solvation dynamics in reverse micelles: the role of headgroup-solute interactions.
    Faeder J; Ladanyi BM
    J Phys Chem B; 2005 Apr; 109(14):6732-40. PubMed ID: 16851757
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Water dynamics--the effects of ions and nanoconfinement.
    Park S; Moilanen DE; Fayer MD
    J Phys Chem B; 2008 May; 112(17):5279-90. PubMed ID: 18370431
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of the dynamic structure of alpha-chymotrypsin in aqueous solution and in reversed micelles by fluorescent active-site probing.
    Dorovska-Taran VN; Veeger C; Visser AJ
    Eur J Biochem; 1993 Jan; 211(1-2):47-55. PubMed ID: 8425550
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of different interfaces and confinement on the structure of the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide entrapped in cationic and anionic reverse micelles.
    Ferreyra DD; Correa NM; Silber JJ; Falcone RD
    Phys Chem Chem Phys; 2012 Mar; 14(10):3460-70. PubMed ID: 22307263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.