These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 31062775)

  • 1. Eggshell particle-reinforced hydrogels for bone tissue engineering: an orthogonal approach.
    Wu X; Stroll SI; Lantigua D; Suvarnapathaki S; Camci-Unal G
    Biomater Sci; 2019 Jun; 7(7):2675-2685. PubMed ID: 31062775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eggshell Microparticle Reinforced Scaffolds for Regeneration of Critical Sized Cranial Defects.
    Wu X; Gauntlett O; Zhang T; Suvarnapathaki S; McCarthy C; Wu B; Camci-Unal G
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):60921-60932. PubMed ID: 34905346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gelatin methacrylate scaffold for bone tissue engineering: The influence of polymer concentration.
    Celikkin N; Mastrogiacomo S; Jaroszewicz J; Walboomers XF; Swieszkowski W
    J Biomed Mater Res A; 2018 Jan; 106(1):201-209. PubMed ID: 28884519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of nanocomposite scaffolds based on biomineralization of N,O-carboxymethyl chitosan/fucoidan conjugates for bone tissue engineering.
    Lu HT; Lu TW; Chen CH; Lu KY; Mi FL
    Int J Biol Macromol; 2018 Dec; 120(Pt B):2335-2345. PubMed ID: 30189280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dextran hydrogels incorporated with bioactive glass-ceramic: Nanocomposite scaffolds for bone tissue engineering.
    Nikpour P; Salimi-Kenari H; Fahimipour F; Rabiee SM; Imani M; Dashtimoghadam E; Tayebi L
    Carbohydr Polym; 2018 Jun; 190():281-294. PubMed ID: 29628249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogel composite scaffolds with an attenuated immunogenicity component for bone tissue engineering applications.
    Gao C; Sow WT; Wang Y; Wang Y; Yang D; Lee BH; Matičić D; Fang L; Li H; Zhang C
    J Mater Chem B; 2021 Mar; 9(8):2033-2041. PubMed ID: 33587079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new composite hydrogel combining the biological properties of collagen with the mechanical properties of a supramolecular scaffold for bone tissue engineering.
    Maisani M; Ziane S; Ehret C; Levesque L; Siadous R; Le Meins JF; Chevallier P; Barthélémy P; De Oliveira H; Amédée J; Mantovani D; Chassande O
    J Tissue Eng Regen Med; 2018 Mar; 12(3):e1489-e1500. PubMed ID: 28875562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation of osteoclast precursors on gellan gum-based spongy-like hydrogels for bone tissue engineering.
    Maia FR; Musson DS; Naot D; da Silva LP; Bastos AR; Costa JB; Oliveira JM; Correlo VM; Reis RL; Cornish J
    Biomed Mater; 2018 Mar; 13(3):035012. PubMed ID: 29442071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroxyapatite-Incorporated Composite Gels Improve Mechanical Properties and Bioactivity of Bone Scaffolds.
    Suvarnapathaki S; Wu X; Lantigua D; Nguyen MA; Camci-Unal G
    Macromol Biosci; 2020 Oct; 20(10):e2000176. PubMed ID: 32755044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering.
    Wang J; Yu X
    Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)-bioglass/chitosan-collagen composite scaffolds: a bone tissue engineering applications.
    Pon-On W; Charoenphandhu N; Teerapornpuntakit J; Thongbunchoo J; Krishnamra N; Tang IM
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():63-72. PubMed ID: 24656353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RGD-mimic polyamidoamine-montmorillonite composites with tunable stiffness as scaffolds for bone tissue-engineering applications.
    Mauro N; Chiellini F; Bartoli C; Gazzarri M; Laus M; Antonioli D; Griffiths P; Manfredi A; Ranucci E; Ferruti P
    J Tissue Eng Regen Med; 2017 Jul; 11(7):2164-2175. PubMed ID: 26948844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering.
    Singh BN; Veeresh V; Mallick SP; Jain Y; Sinha S; Rastogi A; Srivastava P
    Int J Biol Macromol; 2019 Jul; 133():817-830. PubMed ID: 31002908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clay-based nanocomposite hydrogel with attractive mechanical properties and sustained bioactive ion release for bone defect repair.
    Zhai X; Ruan C; Shen J; Zheng C; Zhao X; Pan H; Lu WW
    J Mater Chem B; 2021 Mar; 9(10):2394-2406. PubMed ID: 33625433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro analysis and mechanical properties of twin screw extruded single-layered and coextruded multilayered poly(caprolactone) scaffolds seeded with human fetal osteoblasts for bone tissue engineering.
    Ergun A; Yu X; Valdevit A; Ritter A; Kalyon DM
    J Biomed Mater Res A; 2011 Dec; 99(3):354-66. PubMed ID: 22021183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering.
    Fernandez JM; Molinuevo MS; Cortizo MS; Cortizo AM
    J Tissue Eng Regen Med; 2011 Jun; 5(6):e126-35. PubMed ID: 21312338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of novel in situ synthesized nano-hydroxyapatite/collagen/alginate hydrogels for osteochondral tissue engineering.
    Zheng L; Jiang X; Chen X; Fan H; Zhang X
    Biomed Mater; 2014 Oct; 9(6):065004. PubMed ID: 25358331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration.
    Fang J; Li P; Lu X; Fang L; Lü X; Ren F
    Acta Biomater; 2019 Apr; 88():503-513. PubMed ID: 30772515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradable, phosphate-containing, dual-gelling macromers for cellular delivery in bone tissue engineering.
    Watson BM; Vo TN; Tatara AM; Shah SR; Scott DW; Engel PS; Mikos AG
    Biomaterials; 2015 Oct; 67():286-96. PubMed ID: 26232878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Printed Eggshell Microparticle-Laden Thermoplastic Scaffolds for Bone Tissue Engineering.
    Gezek M; Altunbek M; Torres Gouveia ME; Camci-Unal G
    ACS Appl Mater Interfaces; 2024 Jul; 16(26):32957-32970. PubMed ID: 38885611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.