BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 31062907)

  • 1. Defect and Contact Passivation for Perovskite Solar Cells.
    Aydin E; De Bastiani M; De Wolf S
    Adv Mater; 2019 Jun; 31(25):e1900428. PubMed ID: 31062907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defect Passivation Scheme toward High-Performance Halide Perovskite Solar Cells.
    Du B; He K; Zhao X; Li B
    Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defect Passivation for Perovskite Solar Cells: from Molecule Design to Device Performance.
    Wu T; Li X; Qi Y; Zhang Y; Han L
    ChemSusChem; 2021 Oct; 14(20):4354-4376. PubMed ID: 34424613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Moisture-Resistant FAPbI
    Akman E; Shalan AE; Sadegh F; Akin S
    ChemSusChem; 2021 Feb; 14(4):1176-1183. PubMed ID: 33352009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the Performance of Inverted Perovskite Solar Cells via Grain Boundary Passivation with Carbon Quantum Dots.
    Ma Y; Zhang H; Zhang Y; Hu R; Jiang M; Zhang R; Lv H; Tian J; Chu L; Zhang J; Xue Q; Yip HL; Xia R; Li X; Huang W
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3044-3052. PubMed ID: 30585492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational Strategies for Efficient Perovskite Solar Cells.
    Seo J; Noh JH; Seok SI
    Acc Chem Res; 2016 Mar; 49(3):562-72. PubMed ID: 26950188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defects in CsPbX
    Zhang J; Zhao W; Olthof S; Liu SF
    Small Methods; 2021 Nov; 5(11):e2100725. PubMed ID: 34927958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blading Phase-Pure Formamidinium-Alloyed Perovskites for High-Efficiency Solar Cells with Low Photovoltage Deficit and Improved Stability.
    Wu WQ; Rudd PN; Wang Q; Yang Z; Huang J
    Adv Mater; 2020 Jul; 32(28):e2000995. PubMed ID: 32468688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic Liquid-Assisted Crystallization and Defect Passivation for Efficient Perovskite Solar Cells with Enhanced Open-Circuit Voltage.
    Hu P; Huang S; Guo M; Li Y; Wei M
    ChemSusChem; 2022 Aug; 15(15):e202200819. PubMed ID: 35642752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defect Passivation in Hybrid Perovskite Solar Cells by Tailoring the Electron Density Distribution in Passivation Molecules.
    Xin D; Tie S; Yuan R; Zheng X; Zhu J; Zhang WH
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44233-44240. PubMed ID: 31696708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observing Defect Passivation of the Grain Boundary with 2-Aminoterephthalic Acid for Efficient and Stable Perovskite Solar Cells.
    Liu Z; Cao F; Wang M; Wang M; Li L
    Angew Chem Int Ed Engl; 2020 Mar; 59(10):4161-4167. PubMed ID: 31867802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perovskite-Polymer Blends Influencing Microstructures, Nonradiative Recombination Pathways, and Photovoltaic Performance of Perovskite Solar Cells.
    Fakharuddin A; Seybold M; Agresti A; Pescetelli S; Matteocci F; Haider MI; Birkhold ST; Hu H; Giridharagopal R; Sultan M; Mora-Seró I; Di Carlo A; Schmidt-Mende L
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42542-42551. PubMed ID: 30430822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient and Stable Perovskite Solar Cells with a High Open-Circuit Voltage Over 1.2 V Achieved by a Dual-Side Passivation Layer.
    Kim JH; Kim YR; Kim J; Oh CM; Hwang IW; Kim J; Zeiske S; Ki T; Kwon S; Kim H; Armin A; Suh H; Lee K
    Adv Mater; 2022 Oct; 34(41):e2205268. PubMed ID: 36030364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exfoliated Fluorographene Quantum Dots as Outstanding Passivants for Improved Flexible Perovskite Solar Cells.
    Yang L; Li Y; Wang L; Pei Y; Wang Z; Zhang Y; Lin H; Li X
    ACS Appl Mater Interfaces; 2020 May; 12(20):22992-23001. PubMed ID: 32343556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilizing Organic-Inorganic Lead Halide Perovskite Solar Cells With Efficiency Beyond 20.
    Lin C
    Front Chem; 2020; 8():592. PubMed ID: 32850630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing Open-Circuit Voltage Deficit in Perovskite Solar Cells via Surface Passivation with Phenylhydroxylammonium Halide Salts.
    Yi X; Mao Y; Zhang L; Zhuang J; Zhang Y; Chen N; Lin T; Wei Y; Wang F; Wang J; Li C
    Small Methods; 2021 Mar; 5(3):e2000441. PubMed ID: 34927830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Traps in metal halide perovskites: characterization and passivation.
    Qiu X; Liu Y; Li W; Hu Y
    Nanoscale; 2020 Nov; 12(44):22425-22451. PubMed ID: 33151219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interior/Interface Modification of Textured Perovskite for Enhanced Photovoltaic Outputs of Planar Solar Cells by an In Situ Growth Passivation Technology.
    Wang M; Fan L; Lü W; Sun Q; Wang X; Wang F; Yang J; Liu H; Yang L
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39689-39700. PubMed ID: 34357753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of All-Organic Interlayer Surface Modifiers on the Efficiency and Stability of Perovskite Solar Cells.
    Joseph Yeow Wan Foong J; Febriansyah B; Jyoti Singh Rana P; Ming Koh T; Jun Jie Tay D; Bruno A; Mhaisalkar S; Mathews N
    ChemSusChem; 2021 Mar; 14(6):1524-1533. PubMed ID: 33433943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular materials as interfacial layers and additives in perovskite solar cells.
    Vasilopoulou M; Fakharuddin A; Coutsolelos AG; Falaras P; Argitis P; Yusoff ARBM; Nazeeruddin MK
    Chem Soc Rev; 2020 Jul; 49(13):4496-4526. PubMed ID: 32495754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.