These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
413 related articles for article (PubMed ID: 31062954)
1. Transparent Wood for Thermal Energy Storage and Reversible Optical Transmittance. Montanari C; Li Y; Chen H; Yan M; Berglund LA ACS Appl Mater Interfaces; 2019 Jun; 11(22):20465-20472. PubMed ID: 31062954 [TBL] [Abstract][Full Text] [Related]
2. Sustainable Thermal Energy Batteries from Fully Bio-Based Transparent Wood. Montanari C; Chen H; Lidfeldt M; Gunnarsson J; Olsén P; Berglund LA Small; 2023 Jul; 19(28):e2301262. PubMed ID: 36970834 [TBL] [Abstract][Full Text] [Related]
3. Large-Size Transparent Wood for Energy-Saving Building Applications. Wang X; Zhan T; Liu Y; Shi J; Pan B; Zhang Y; Cai L; Shi SQ ChemSusChem; 2018 Dec; 11(23):4086-4093. PubMed ID: 30296365 [TBL] [Abstract][Full Text] [Related]
4. Preparation and Characterization of Paraffin/Mesoporous Silica Shape-Stabilized Phase Change Materials for Building Thermal Insulation. Li Y; Dong M; Song W; Liang X; Chen Y; Liu Y Materials (Basel); 2021 Apr; 14(7):. PubMed ID: 33916813 [TBL] [Abstract][Full Text] [Related]
5. Performance enhancement of a thermal energy storage system using shape-stabilized LDPE/hexadecane/SEBS composite PCMs by copper oxide addition. Trigui A; Abdelmouleh M; Boudaya C RSC Adv; 2022 Aug; 12(34):21990-22003. PubMed ID: 36043091 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of carbonized waste tire for development of novel shape stabilized composite phase change material for thermal energy storage. Sarı A; Saleh TA; Hekimoğlu G; Tuzen M; Tyagi VV Waste Manag; 2020 Feb; 103():352-360. PubMed ID: 31923842 [TBL] [Abstract][Full Text] [Related]
7. Perovskite-Coated Thermochromic Transparent Wood: A Novel Material for Smart Windows in Energy-Efficient and Sustainable Buildings. Du Y; Liu S; Li Y; Chen X; Ho TC; Chao LC; Tso CY ACS Appl Mater Interfaces; 2023 Oct; 15(42):49665-49677. PubMed ID: 37847175 [TBL] [Abstract][Full Text] [Related]
8. Construction and mechanism analysis of flame-retardant, energy-storage and transparent bio-based composites based on natural cellulose template. Li M; Li X; Xu K; Qin A; Yan C; Xu Y; Shan D; Wang J; Xu M; Li X; Li B; Liu L Int J Biol Macromol; 2024 Apr; 263(Pt 1):130317. PubMed ID: 38387629 [TBL] [Abstract][Full Text] [Related]
9. Novel Biphasically and Reversibly Transparent Phase Change Material to Solve the Thermal Issues in Transparent Electronics. Zhang Y; Wang K; Sun Y; Xu M; Cheng Z ACS Appl Mater Interfaces; 2022 Jul; 14(27):31245-31256. PubMed ID: 35776859 [TBL] [Abstract][Full Text] [Related]
10. A Novel Molecular PCM Wall with Inorganic Composite: Dynamic Thermal Analysis and Optimization in Charge-Discharge Cycles. Yang Q; Xiong J; Mao G; Zhang Y Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687647 [TBL] [Abstract][Full Text] [Related]
11. Micro- and nano-encapsulated metal and alloy-based phase-change materials for thermal energy storage. Zhu S; Nguyen MT; Yonezawa T Nanoscale Adv; 2021 Aug; 3(16):4626-4645. PubMed ID: 36134315 [TBL] [Abstract][Full Text] [Related]
12. Cellulose Nanofibrils Endow Phase-Change Polyethylene Glycol with Form Control and Solid-to-gel Transition for Thermal Energy Storage. Yazdani MR; Ajdary R; Kankkunen A; Rojas OJ; Seppälä A ACS Appl Mater Interfaces; 2021 Feb; 13(5):6188-6200. PubMed ID: 33522810 [TBL] [Abstract][Full Text] [Related]
13. Recent Patents on Nano-Enhanced Materials for Use in Thermal Energy Storage (TES). Ferrer G; Barreneche C; Solé A; Juliá JE; Cabeza LF Recent Pat Nanotechnol; 2017 Jul; 11(2):101-108. PubMed ID: 28049393 [TBL] [Abstract][Full Text] [Related]
14. Effects of biochar pyrolysis temperature on thermal properties of polyethylene glycol/biochar composites as shape-stable biocomposite phase change materials. Liu S; Peng S; Zhang B; Xue B; Yang Z; Wang S; Xu G RSC Adv; 2022 Mar; 12(16):9587-9598. PubMed ID: 35424955 [TBL] [Abstract][Full Text] [Related]
15. A thermal energy storage composite by incorporating microencapsulated phase change material into wood. Wang W; Cao H; Liu J; Jia S; Ma L; Guo X; Sun W RSC Adv; 2020 Feb; 10(14):8097-8103. PubMed ID: 35497872 [TBL] [Abstract][Full Text] [Related]
16. Copper Sulfide Nanodisk-Doped Solid-Solid Phase Change Materials for Full Spectrum Solar-Thermal Energy Harvesting and Storage. Xiong F; Yuan K; Aftab W; Jiang H; Shi J; Liang Z; Gao S; Zhong R; Wang H; Zou R ACS Appl Mater Interfaces; 2021 Jan; 13(1):1377-1385. PubMed ID: 33351579 [TBL] [Abstract][Full Text] [Related]
17. Thermal Performance of Mortars Based on Different Binders and Containing a Novel Sustainable Phase Change Material (PCM). Sarcinella A; Aguiar JLB; Lettieri M; Cunha S; Frigione M Materials (Basel); 2020 Apr; 13(9):. PubMed ID: 32354110 [TBL] [Abstract][Full Text] [Related]
18. Evaluating the Multifunctional Performance of Structural Composites for Thermal Energy Storage. Fredi G; Dorigato A; Fambri L; Pegoretti A Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34578014 [TBL] [Abstract][Full Text] [Related]
19. Shape-stabilization of polyethylene glycol phase change materials with chitin nanofibers for applications in "smart" windows. Wijesena RN; Tissera ND; Rathnayaka VWSG; Rajapakse HD; de Silva RM; de Silva KMN Carbohydr Polym; 2020 Jun; 237():116132. PubMed ID: 32241395 [TBL] [Abstract][Full Text] [Related]
20. Clear Wood toward High-Performance Building Materials. Jia C; Chen C; Mi R; Li T; Dai J; Yang Z; Pei Y; He S; Bian H; Jang SH; Zhu JY; Yang B; Hu L ACS Nano; 2019 Sep; 13(9):9993-10001. PubMed ID: 31502821 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]