These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 31063240)

  • 1. Carbohydrate-based nanomaterials for biomedical applications.
    Gim S; Zhu Y; Seeberger PH; Delbianco M
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2019 Sep; 11(5):e1558. PubMed ID: 31063240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glyconanomaterials for biosensing applications.
    Hao N; Neranon K; Ramström O; Yan M
    Biosens Bioelectron; 2016 Feb; 76():113-30. PubMed ID: 26212205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review on carbohydrate embedded polyurethanes: An emerging area in the scope of biomedical applications.
    Solanki A; Das M; Thakore S
    Carbohydr Polym; 2018 Feb; 181():1003-1016. PubMed ID: 29253925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering nanomaterial surfaces for biomedical applications.
    Wang X; Liu LH; Ramström O; Yan M
    Exp Biol Med (Maywood); 2009 Oct; 234(10):1128-39. PubMed ID: 19596820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Self-Assembling Peptides to Integrate Biomolecules into Functional Supramolecular Biomaterials.
    Liu R; Hudalla GA
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31013712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbohydrate nanocarriers in biomedical applications: functionalization and construction.
    Kang B; Opatz T; Landfester K; Wurm FR
    Chem Soc Rev; 2015 Nov; 44(22):8301-25. PubMed ID: 26278884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Carbohydrate-Based Particles for Biomedical Applications: Strategies to Construct and Modify.
    Thodikayil AT; Sharma S; Saha S
    ACS Appl Bio Mater; 2021 Apr; 4(4):2907-2940. PubMed ID: 35014384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical nanomaterials via biomolecular self-assembly and bioinspiration for energy and environmental applications.
    Gong C; Sun S; Zhang Y; Sun L; Su Z; Wu A; Wei G
    Nanoscale; 2019 Mar; 11(10):4147-4182. PubMed ID: 30806426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring and Controlling the Polymorphism in Supramolecular Assemblies of Carbohydrates and Proteins.
    Gao C; Chen G
    Acc Chem Res; 2020 Apr; 53(4):740-751. PubMed ID: 32174104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications.
    Manivasagan P; Oh J
    Int J Biol Macromol; 2016 Jan; 82():315-27. PubMed ID: 26523336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical and biochemical insights on DNA structures in artificial and living systems.
    Chen N; Li J; Song H; Chao J; Huang Q; Fan C
    Acc Chem Res; 2014 Jun; 47(6):1720-30. PubMed ID: 24588263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbohydrates based stimulus responsive nanocarriers for cancer-targeted chemotherapy: a review of current practices.
    Zhang CW; Zhang JG; Yang X; Du WL; Yu ZL; Lv ZY; Mou XZ
    Expert Opin Drug Deliv; 2022 Jun; 19(6):623-640. PubMed ID: 35611662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glyconanoparticles polyvalent tools to study carbohydrate-based interactions.
    Marradi M; Martín-Lomas M; Penadés S
    Adv Carbohydr Chem Biochem; 2010; 64():211-90. PubMed ID: 20837200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phage-based nanomaterials for biomedical applications.
    Farr R; Choi DS; Lee SW
    Acta Biomater; 2014 Apr; 10(4):1741-50. PubMed ID: 23823252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycosylated nanoscale surfaces: preparation and applications in medicine and molecular biology.
    Kennedy DC; Grünstein D; Lai CH; Seeberger PH
    Chemistry; 2013 Mar; 19(12):3794-800. PubMed ID: 23417915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mixed-charge bionanointerfaces: Opposite charges work in harmony to meet the challenges in biomedical applications.
    Li H; Li X; Ji J
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020 May; 12(3):e1600. PubMed ID: 31778044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications.
    Sasaki Y; Akiyoshi K
    Chem Rec; 2010 Dec; 10(6):366-76. PubMed ID: 20836092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen-Bonding Interactions from Nucleobase-Decorated Supramolecular Polymer: Synthesis, Self-Assembly and Biomedical Applications.
    Ilhami FB; Birhan YS; Cheng CC
    ACS Biomater Sci Eng; 2024 Jan; 10(1):234-254. PubMed ID: 38103183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbohydrate-based nanoparticles for potential applications in medicine.
    Marradi M; García I; Penadés S
    Prog Mol Biol Transl Sci; 2011; 104():141-73. PubMed ID: 22093219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanomaterials for Biomedical Applications: Production, Characterisations, Recent Trends and Difficulties.
    Mabrouk M; Das DB; Salem ZA; Beherei HH
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33670668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.