These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 31063429)
1. Effect of Slab Thickness on the Detection of Pulmonary Nodules by Use of CT Maximum and Minimum Intensity Projection. Li WJ; Chu ZG; Zhang Y; Li Q; Zheng YN; Lv FJ AJR Am J Roentgenol; 2019 Sep; 213(3):562-567. PubMed ID: 31063429 [No Abstract] [Full Text] [Related]
2. Effect of slab thickness on the CT detection of pulmonary nodules: use of sliding thin-slab maximum intensity projection and volume rendering. Kawel N; Seifert B; Luetolf M; Boehm T AJR Am J Roentgenol; 2009 May; 192(5):1324-9. PubMed ID: 19380557 [TBL] [Abstract][Full Text] [Related]
3. Computer-aided Detection of Subsolid Nodules at Chest CT: Improved Performance with Deep Learning-based CT Section Thickness Reduction. Park S; Lee SM; Kim W; Park H; Jung KH; Do KH; Seo JB Radiology; 2021 Apr; 299(1):211-219. PubMed ID: 33560190 [TBL] [Abstract][Full Text] [Related]
4. Efficacy of computer-aided detection system and thin-slab maximum intensity projection technique in the detection of pulmonary nodules in patients with resected metastases. Park EA; Goo JM; Lee JW; Kang CH; Lee HJ; Lee CH; Park CM; Lee HY; Im JG Invest Radiol; 2009 Feb; 44(2):105-13. PubMed ID: 19034026 [TBL] [Abstract][Full Text] [Related]
5. Comparison of the effects of model-based iterative reconstruction and filtered back projection algorithms on software measurements in pulmonary subsolid nodules. Cohen JG; Kim H; Park SB; van Ginneken B; Ferretti GR; Lee CH; Goo JM; Park CM Eur Radiol; 2017 Aug; 27(8):3266-3274. PubMed ID: 28058482 [TBL] [Abstract][Full Text] [Related]
6. Maximum-Intensity-Projection and Computer-Aided-Detection Algorithms as Stand-Alone Reader Devices in Lung Cancer Screening Using Different Dose Levels and Reconstruction Kernels. Ebner L; Roos JE; Christensen JD; Dobrocky T; Leidolt L; Brela B; Obmann VC; Joy S; Huber A; Christe A AJR Am J Roentgenol; 2016 Aug; 207(2):282-8. PubMed ID: 27249174 [TBL] [Abstract][Full Text] [Related]
7. Automatic Pulmonary Nodule Detection in CT Scans Using Convolutional Neural Networks Based on Maximum Intensity Projection. Zheng S; Guo J; Cui X; Veldhuis RNJ; Oudkerk M; van Ooijen PMA IEEE Trans Med Imaging; 2020 Mar; 39(3):797-805. PubMed ID: 31425026 [TBL] [Abstract][Full Text] [Related]
8. Deep learning-based pulmonary nodule detection: Effect of slab thickness in maximum intensity projections at the nodule candidate detection stage. Zheng S; Cui X; Vonder M; Veldhuis RNJ; Ye Z; Vliegenthart R; Oudkerk M; van Ooijen PMA Comput Methods Programs Biomed; 2020 Nov; 196():105620. PubMed ID: 32615493 [TBL] [Abstract][Full Text] [Related]
9. Malignancy estimation of Lung-RADS criteria for subsolid nodules on CT: accuracy of low and high risk spectrum when using NLST nodules. Chung K; Jacobs C; Scholten ET; Mets OM; Dekker I; Prokop M; van Ginneken B; Schaefer-Prokop CM Eur Radiol; 2017 Nov; 27(11):4672-4679. PubMed ID: 28439653 [TBL] [Abstract][Full Text] [Related]
10. Benefit of computer-aided detection analysis for the detection of subsolid and solid lung nodules on thin- and thick-section CT. Godoy MC; Kim TJ; White CS; Bogoni L; de Groot P; Florin C; Obuchowski N; Babb JS; Salganicoff M; Naidich DP; Anand V; Park S; Vlahos I; Ko JP AJR Am J Roentgenol; 2013 Jan; 200(1):74-83. PubMed ID: 23255744 [TBL] [Abstract][Full Text] [Related]
11. Ultralow-dose CT with tin filtration for detection of solid and sub solid pulmonary nodules: a phantom study. Martini K; Higashigaito K; Barth BK; Baumueller S; Alkadhi H; Frauenfelder T Br J Radiol; 2015; 88(1056):20150389. PubMed ID: 26492317 [TBL] [Abstract][Full Text] [Related]
12. Sub-solid Nodule Detection Performance on Reduced-dose Computed Tomography with Iterative Reduction: Comparison Between 20 mA (7 mAs) and 120 mA (42 mAs) Regarding Nodular Size and Characteristics and Association with Size-specific Dose Estimate. Nagatani Y; Takahashi M; Ikeda M; Yamashiro T; Koyama H; Koyama M; Moriya H; Noma S; Tomiyama N; Ohno Y; Murata K; Murayama S; Acad Radiol; 2017 Aug; 24(8):995-1007. PubMed ID: 28606593 [TBL] [Abstract][Full Text] [Related]
13. Whole-Lesion Computed Tomography-Based Entropy Parameters for the Differentiation of Minimally Invasive and Invasive Adenocarcinomas Appearing as Pulmonary Subsolid Nodules. Chen X; Feng B; Chen Y; Hao Y; Duan X; Cui E; Liu Z; Zhang C; Long W J Comput Assist Tomogr; 2019; 43(5):817-824. PubMed ID: 31343995 [TBL] [Abstract][Full Text] [Related]
14. Growth and Clinical Impact of 6-mm or Larger Subsolid Nodules after 5 Years of Stability at Chest CT. Lee JH; Lim WH; Hong JH; Nam JG; Hwang EJ; Kim H; Goo JM; Park CM Radiology; 2020 May; 295(2):448-455. PubMed ID: 32181731 [TBL] [Abstract][Full Text] [Related]
15. [The performance of digital chest radiographs in the detection and diagnosis of pulmonary nodules and the consistency among readers]. Liang M; Zhao SJ; Zhou LN; Xu XJ; Wang YW; Niu L; Wang HH; Tang W; Wu N Zhonghua Zhong Liu Za Zhi; 2023 Mar; 45(3):265-272. PubMed ID: 36944548 [No Abstract] [Full Text] [Related]
16. Performance of ultralow-dose CT with iterative reconstruction in lung cancer screening: limiting radiation exposure to the equivalent of conventional chest X-ray imaging. Huber A; Landau J; Ebner L; Bütikofer Y; Leidolt L; Brela B; May M; Heverhagen J; Christe A Eur Radiol; 2016 Oct; 26(10):3643-52. PubMed ID: 26813670 [TBL] [Abstract][Full Text] [Related]
17. Pulmonary nodules: sensitivity of maximum intensity projection versus that of volume rendering of 3D multidetector CT data. Peloschek P; Sailer J; Weber M; Herold CJ; Prokop M; Schaefer-Prokop C Radiology; 2007 May; 243(2):561-9. PubMed ID: 17456878 [TBL] [Abstract][Full Text] [Related]
18. Pulmonary nodule detection on MDCT images: evaluation of diagnostic performance using thin axial images, maximum intensity projections, and computer-assisted detection. Jankowski A; Martinelli T; Timsit JF; Brambilla C; Thony F; Coulomb M; Ferretti G Eur Radiol; 2007 Dec; 17(12):3148-56. PubMed ID: 17763856 [TBL] [Abstract][Full Text] [Related]
19. Computer-aided diagnosis (CAD) of subsolid nodules: Evaluation of a commercial CAD system. Benzakoun J; Bommart S; Coste J; Chassagnon G; Lederlin M; Boussouar S; Revel MP Eur J Radiol; 2016 Oct; 85(10):1728-1734. PubMed ID: 27666609 [TBL] [Abstract][Full Text] [Related]
20. Detection of Subsolid Nodules in Lung Cancer Screening: Complementary Sensitivity of Visual Reading and Computer-Aided Diagnosis. Silva M; Schaefer-Prokop CM; Jacobs C; Capretti G; Ciompi F; van Ginneken B; Pastorino U; Sverzellati N Invest Radiol; 2018 Aug; 53(8):441-449. PubMed ID: 29543693 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]