BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31063533)

  • 1. Aqueous microgels modified with photosensitive wedge-shaped amphiphilic molecules: synthesis, structure and photochemical behaviour.
    Dolgopolov AV; Grafskaia KN; Bovsunovskaya PV; Melnikova ER; Ivanov DA; Pich A; Zhu X; Möller M
    Photochem Photobiol Sci; 2019 Jul; 18(7):1709-1715. PubMed ID: 31063533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aqueous microgels modified by wedge-shaped amphiphilic molecules: hydrophilic microcontainers with hydrophobic nanodomains.
    Cheng C; Zhu X; Pich A; Möller M
    Langmuir; 2010 Apr; 26(7):4709-16. PubMed ID: 19961194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and characterization of thermally and glucose-sensitive poly N-vinylcaprolactam-Based microgels.
    Bitar A; Fessi H; Elaissari A
    J Biomed Nanotechnol; 2012 Oct; 8(5):709-19. PubMed ID: 22888741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microgels for long-term storage of vitamins for extended spaceflight.
    Schroeder R
    Life Sci Space Res (Amst); 2018 Feb; 16():26-37. PubMed ID: 29475517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-sensitive hybrid microgels with magnetic properties.
    Pich A; Bhattacharya S; Lu Y; Boyko V; Adler HJ
    Langmuir; 2004 Nov; 20(24):10706-11. PubMed ID: 15544405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the temperature-responsive polymers and gels based on N-propylacrylamides and N-propylmethacrylamides.
    Kano M; Kokufuta E
    Langmuir; 2009 Aug; 25(15):8649-55. PubMed ID: 19323452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of size, crosslinking degree and surface structure of poly(N-vinylcaprolactam)-based microgels on their penetration into multicellular tumor spheroids.
    Zhang C; Gau E; Sun W; Zhu J; Schmidt BM; Pich A; Shi X
    Biomater Sci; 2019 Nov; 7(11):4738-4747. PubMed ID: 31502601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and aqueous solution properties of sterically stabilized pH-responsive polyampholyte microgels.
    Tan BH; Ravi P; Tan LN; Tam KC
    J Colloid Interface Sci; 2007 May; 309(2):453-63. PubMed ID: 17307196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amylose-Coated Biohybrid Microgels by Phosphorylase-Catalyzed Grafting-From Polymerization.
    Gau E; Flecken F; Belthle T; Ambarwati M; Loos K; Pich A
    Macromol Rapid Commun; 2019 Aug; 40(16):e1900144. PubMed ID: 31162765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drying mechanism of poly(N-isopropylacrylamide) microgel dispersions.
    Horigome K; Suzuki D
    Langmuir; 2012 Sep; 28(36):12962-70. PubMed ID: 22916861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of novel pH-responsive microgels based on tertiary amine methacrylates.
    Amalvy JI; Wanless EJ; Li Y; Michailidou V; Armes SP; Duccini Y
    Langmuir; 2004 Oct; 20(21):8992-9. PubMed ID: 15461478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(vinylcaprolactam)-based biodegradable multiresponsive microgels for drug delivery.
    Wang Y; Nie J; Chang B; Sun Y; Yang W
    Biomacromolecules; 2013 Sep; 14(9):3034-46. PubMed ID: 23909593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soft Poly(N-vinylcaprolactam) Based Aqueous Particles.
    Siirilä J; Tenhu H
    Acta Chim Slov; 2022 Jun; 69(2):251-260. PubMed ID: 35861067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical aging and phase behavior of multiresponsive microgel colloidal dispersions.
    Meng Z; Cho JK; Breedveld V; Lyon LA
    J Phys Chem B; 2009 Apr; 113(14):4590-9. PubMed ID: 19298093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase separation of aqueous poly(2-dimethylaminoethyl methacrylate-block-N-vinylcaprolactams).
    Karesoja M; Karjalainen E; Hietala S; Tenhu H
    J Phys Chem B; 2014 Sep; 118(36):10776-84. PubMed ID: 25133652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sortase-Mediated Surface Functionalization of Stimuli-Responsive Microgels.
    Gau E; Mate DM; Zou Z; Oppermann A; Töpel A; Jakob F; Wöll D; Schwaneberg U; Pich A
    Biomacromolecules; 2017 Sep; 18(9):2789-2798. PubMed ID: 28745493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FRET-derived ratiometric fluorescent K+ sensors fabricated from thermoresponsive poly(N-isopropylacrylamide) microgels labeled with crown ether moieties.
    Yin J; Li C; Wang D; Liu S
    J Phys Chem B; 2010 Sep; 114(38):12213-20. PubMed ID: 20825175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of Poly(N-isopropylacrylamide)/Poly(acrylic acid) semi-IPN nanocomposite microgels.
    Ma J; Fan B; Liang B; Xu J
    J Colloid Interface Sci; 2010 Jan; 341(1):88-93. PubMed ID: 19822320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unexpected cononsolvency behavior of poly (N-isopropylacrylamide)-based microgels.
    Heppner IN; Islam MR; Serpe MJ
    Macromol Rapid Commun; 2013 Nov; 34(21):1708-13. PubMed ID: 24108519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of N-isopropylacrylamide/acrylic acid copolymer core-shell microgel particles.
    Khan A
    J Colloid Interface Sci; 2007 Sep; 313(2):697-704. PubMed ID: 17561067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.