These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 31063598)

  • 1. The role of genetics in mainstreaming the production of new and orphan crops to diversify food systems and support human nutrition.
    Dawson IK; Powell W; Hendre P; Bančič J; Hickey JM; Kindt R; Hoad S; Hale I; Jamnadass R
    New Phytol; 2019 Oct; 224(1):37-54. PubMed ID: 31063598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orphan Crops and their Wild Relatives in the Genomic Era.
    Ye CY; Fan L
    Mol Plant; 2021 Jan; 14(1):27-39. PubMed ID: 33346062
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Jian LM; Xiao YJ; Yan JB
    Yi Chuan; 2023 Sep; 45(9):741-753. PubMed ID: 37731229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speed breeding orphan crops.
    Chiurugwi T; Kemp S; Powell W; Hickey LT
    Theor Appl Genet; 2019 Mar; 132(3):607-616. PubMed ID: 30341490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prospects of orphan crops in climate change.
    Mabhaudhi T; Chimonyo VGP; Hlahla S; Massawe F; Mayes S; Nhamo L; Modi AT
    Planta; 2019 Sep; 250(3):695-708. PubMed ID: 30868238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Harnessing Knowledge from Maize and Rice Domestication for New Crop Breeding.
    Chen Q; Li W; Tan L; Tian F
    Mol Plant; 2021 Jan; 14(1):9-26. PubMed ID: 33316465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. African Orphan Crops Consortium (AOCC): status of developing genomic resources for African orphan crops.
    Hendre PS; Muthemba S; Kariba R; Muchugi A; Fu Y; Chang Y; Song B; Liu H; Liu M; Liao X; Sahu SK; Wang S; Li L; Lu H; Peng S; Cheng S; Xu X; Yang H; Wang J; Liu X; Simons A; Shapiro HY; Mumm RH; Van Deynze A; Jamnadass R
    Planta; 2019 Sep; 250(3):989-1003. PubMed ID: 31073657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetics and breeding for climate change in Orphan crops.
    Kamenya SN; Mikwa EO; Song B; Odeny DA
    Theor Appl Genet; 2021 Jun; 134(6):1787-1815. PubMed ID: 33486565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beyond landraces: developing improved germplasm resources for underutilized species - a case for Bambara groundnut.
    Aliyu S; Massawe F; Mayes S
    Biotechnol Genet Eng Rev; 2014 Oct; 30(1-2):127-41. PubMed ID: 25603880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revisiting the versatile buckwheat: reinvigorating genetic gains through integrated breeding and genomics approach.
    Joshi DC; Chaudhari GV; Sood S; Kant L; Pattanayak A; Zhang K; Fan Y; Janovská D; Meglič V; Zhou M
    Planta; 2019 Sep; 250(3):783-801. PubMed ID: 30623242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [De novo domestication to create new crops].
    Yang XP; Yu A; Xu C
    Yi Chuan; 2019 Sep; 41(9):827-835. PubMed ID: 31549681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomics of crop wild relatives: expanding the gene pool for crop improvement.
    Brozynska M; Furtado A; Henry RJ
    Plant Biotechnol J; 2016 Apr; 14(4):1070-85. PubMed ID: 26311018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ancient orphan legume horse gram: a potential food and forage crop of future.
    Aditya JP; Bhartiya A; Chahota RK; Joshi D; Chandra N; Kant L; Pattanayak A
    Planta; 2019 Sep; 250(3):891-909. PubMed ID: 31115659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modernising breeding for orphan crops: tools, methodologies, and beyond.
    Ribaut JM; Ragot M
    Planta; 2019 Sep; 250(3):971-977. PubMed ID: 31256257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The integrated genomics of crop domestication and breeding.
    Huang X; Huang S; Han B; Li J
    Cell; 2022 Jul; 185(15):2828-2839. PubMed ID: 35643084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospects for the accelerated improvement of the resilient crop quinoa.
    López-Marqués RL; Nørrevang AF; Ache P; Moog M; Visintainer D; Wendt T; Østerberg JT; Dockter C; Jørgensen ME; Salvador AT; Hedrich R; Gao C; Jacobsen SE; Shabala S; Palmgren M
    J Exp Bot; 2020 Sep; 71(18):5333-5347. PubMed ID: 32643753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entailing the Next-Generation Sequencing and Metabolome for Sustainable Agriculture by Improving Plant Tolerance.
    Ashraf MF; Hou D; Hussain Q; Imran M; Pei J; Ali M; Shehzad A; Anwar M; Noman A; Waseem M; Lin X
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinformatics in the orphan crops.
    Armstead I; Huang L; Ravagnani A; Robson P; Ougham H
    Brief Bioinform; 2009 Nov; 10(6):645-53. PubMed ID: 19734255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo domestication: retrace the history of agriculture to design future crops.
    Zhang J; Yu H; Li J
    Curr Opin Biotechnol; 2023 Jun; 81():102946. PubMed ID: 37080109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic insights into domestication and genetic improvement of fruit crops.
    Wang R; Li X; Sun M; Xue C; Korban SS; Wu J
    Plant Physiol; 2023 Aug; 192(4):2604-2627. PubMed ID: 37163660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.