These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 31063598)

  • 21. Finger millet: a hero in the making to combat food insecurity.
    Wright H; Devos KM
    Theor Appl Genet; 2024 May; 137(6):139. PubMed ID: 38771345
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Toward the domestication of lignocellulosic energy crops: learning from food crop domestication.
    Sang T
    J Integr Plant Biol; 2011 Feb; 53(2):96-104. PubMed ID: 21261812
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Orphan legumes: harnessing their potential for food, nutritional and health security through genetic approaches.
    Chongtham SK; Devi EL; Samantara K; Yasin JK; Wani SH; Mukherjee S; Razzaq A; Bhupenchandra I; Jat AL; Singh LK; Kumar A
    Planta; 2022 Jun; 256(2):24. PubMed ID: 35767119
    [TBL] [Abstract][Full Text] [Related]  

  • 24. De novo domestication of wild species to create crops with increased resilience and nutritional value.
    Gasparini K; Moreira JDR; Peres LEP; Zsögön A
    Curr Opin Plant Biol; 2021 Apr; 60():102006. PubMed ID: 33556879
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crop breeding - From experience-based selection to precision design.
    Liu J; Fernie AR; Yan J
    J Plant Physiol; 2021 Jan; 256():153313. PubMed ID: 33202375
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intragenic crop improvement: combining the benefits of traditional breeding and genetic engineering.
    Rommens CM
    J Agric Food Chem; 2007 May; 55(11):4281-8. PubMed ID: 17488120
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prospects of Feral Crop De Novo Redomestication.
    Pisias MT; Bakala HS; McAlvay AC; Mabry ME; Birchler JA; Yang B; Pires JC
    Plant Cell Physiol; 2022 Nov; 63(11):1641-1653. PubMed ID: 35639623
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetically modified (GM) crops: milestones and new advances in crop improvement.
    Kamthan A; Chaudhuri A; Kamthan M; Datta A
    Theor Appl Genet; 2016 Sep; 129(9):1639-55. PubMed ID: 27381849
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular mechanisms involved in convergent crop domestication.
    Lenser T; Theißen G
    Trends Plant Sci; 2013 Dec; 18(12):704-14. PubMed ID: 24035234
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accelerated Domestication of New Crops: Yield is Key.
    Luo G; Najafi J; Correia PMP; Trinh MDL; Chapman EA; Østerberg JT; Thomsen HC; Pedas PR; Larson S; Gao C; Poland J; Knudsen S; DeHaan L; Palmgren M
    Plant Cell Physiol; 2022 Nov; 63(11):1624-1640. PubMed ID: 35583202
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reproductive traits and evolutionary divergence between Mediterranean crops and their wild relatives.
    Iriondo JM; Milla R; Volis S; Rubio de Casas R
    Plant Biol (Stuttg); 2018 Jan; 20 Suppl 1():78-88. PubMed ID: 28976618
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genomics and molecular breeding in lesser explored pulse crops: current trends and future opportunities.
    Bohra A; Jha UC; Kishor PB; Pandey S; Singh NP
    Biotechnol Adv; 2014 Dec; 32(8):1410-28. PubMed ID: 25196916
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops.
    Meyer RS; DuVal AE; Jensen HR
    New Phytol; 2012 Oct; 196(1):29-48. PubMed ID: 22889076
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Winged bean (Psophocarpus tetragonolobus (L.) DC.) for food and nutritional security: synthesis of past research and future direction.
    Tanzi AS; Eagleton GE; Ho WK; Wong QN; Mayes S; Massawe F
    Planta; 2019 Sep; 250(3):911-931. PubMed ID: 30911885
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic manipulations in crops: Challenges and opportunities.
    Ahmad N; Mukhtar Z
    Genomics; 2017 Oct; 109(5-6):494-505. PubMed ID: 28778540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Domestication of Crop Metabolomes: Desired and Unintended Consequences.
    Alseekh S; Scossa F; Wen W; Luo J; Yan J; Beleggia R; Klee HJ; Huang S; Papa R; Fernie AR
    Trends Plant Sci; 2021 Jun; 26(6):650-661. PubMed ID: 33653662
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sacha inchi (Plukenetia volubilis L.)-from lost crop of the Incas to part of the solution to global challenges?
    Kodahl N
    Planta; 2020 Mar; 251(4):80. PubMed ID: 32185506
    [TBL] [Abstract][Full Text] [Related]  

  • 38. De-Domestication: An Extension of Crop Evolution.
    Wu D; Lao S; Fan L
    Trends Plant Sci; 2021 Jun; 26(6):560-574. PubMed ID: 33648850
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genetically Engineered Crops and Certified Organic Agriculture for Improving Nutrition Security in Africa and South Asia.
    Pray C; Ledermann S
    World Rev Nutr Diet; 2016; 115():175-83. PubMed ID: 27197837
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diversifying crops for food and nutrition security - a case of teff.
    Cheng A; Mayes S; Dalle G; Demissew S; Massawe F
    Biol Rev Camb Philos Soc; 2017 Feb; 92(1):188-198. PubMed ID: 26456883
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.