These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 31063946)

  • 1. Metals as phagocyte antimicrobial effectors.
    Sheldon JR; Skaar EP
    Curr Opin Immunol; 2019 Oct; 60():1-9. PubMed ID: 31063946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Demonstration of
    Menghani SV; Rivera A; Neubert M; Hagerty JR; Lewis L; Galgiani JN; Jolly ER; Alvin JW; Johnson MDL
    Microbiol Spectr; 2021 Oct; 9(2):e0077821. PubMed ID: 34468162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A novel role for transition metals in anti-microbial immunity].
    Botella H; Stadthagen G; de Chastellier C; Neyrolles O
    Med Sci (Paris); 2012 Jan; 28(1):18-21. PubMed ID: 22289820
    [No Abstract]   [Full Text] [Related]  

  • 4. Synthesis, spectroscopic and thermal characterization of sulpiride complexes of iron, manganese, copper, cobalt, nickel, and zinc salts. Antibacterial and antifungal activity.
    Mohamed GG; Soliman MH
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Aug; 76(3-4):341-7. PubMed ID: 20418151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent developments in copper and zinc homeostasis in bacterial pathogens.
    Braymer JJ; Giedroc DP
    Curr Opin Chem Biol; 2014 Apr; 19():59-66. PubMed ID: 24463765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential Effects of Iron, Zinc, and Copper on
    Buracco S; Peracino B; Andreini C; Bracco E; Bozzaro S
    Front Cell Infect Microbiol; 2017; 7():536. PubMed ID: 29379774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Determinants in Phagocyte-Bacteria Interactions.
    Kaufmann SHE; Dorhoi A
    Immunity; 2016 Mar; 44(3):476-491. PubMed ID: 26982355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of metal availability on immune function during infection.
    Monteith AJ; Skaar EP
    Trends Endocrinol Metab; 2021 Nov; 32(11):916-928. PubMed ID: 34483037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mycobacteria, metals, and the macrophage.
    Neyrolles O; Wolschendorf F; Mitra A; Niederweis M
    Immunol Rev; 2015 Mar; 264(1):249-63. PubMed ID: 25703564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, structural and biological studies of nickel(II), copper(II) and zinc(II) chelates with tridentate Schiff bases having NNO and NNS donor systems.
    Chohan ZH; Kausar S
    Chem Pharm Bull (Tokyo); 1993 May; 41(5):951-3. PubMed ID: 8339341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of feeding elevated concentrations of copper and zinc on the antimicrobial susceptibilities of fecal bacteria in feedlot cattle.
    Jacob ME; Fox JT; Nagaraja TG; Drouillard JS; Amachawadi RG; Narayanan SK
    Foodborne Pathog Dis; 2010 Jun; 7(6):643-8. PubMed ID: 20482227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of metal ions in the virulence and viability of bacterial pathogens.
    Begg SL
    Biochem Soc Trans; 2019 Feb; 47(1):77-87. PubMed ID: 30626704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal limitation and toxicity at the interface between host and pathogen.
    Becker KW; Skaar EP
    FEMS Microbiol Rev; 2014 Nov; 38(6):1235-49. PubMed ID: 25211180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron and zinc ions, potent weapons against multidrug-resistant bacteria.
    Ye Q; Chen W; Huang H; Tang Y; Wang W; Meng F; Wang H; Zheng Y
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5213-5227. PubMed ID: 32303820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial and mutagenic activity of some carbono- and thiocarbonohydrazone ligands and their copper(II), iron(II) and zinc(II) complexes.
    Bacchi A; Carcelli M; Pelagatti P; Pelizzi C; Pelizzi G; Zani F
    J Inorg Biochem; 1999 Jun; 75(2):123-33. PubMed ID: 10450607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nutritional immunity: transition metals at the pathogen-host interface.
    Hood MI; Skaar EP
    Nat Rev Microbiol; 2012 Jul; 10(8):525-37. PubMed ID: 22796883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of metal ions with a 2,4-diaminopyrimidine derivative (trimethoprim). Antibacterial studies.
    Simó B; Perelló L; Ortiz R; Castiñeiras A; Latorre J; Cantón E
    J Inorg Biochem; 2000 Oct; 81(4):275-83. PubMed ID: 11065191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimicrobial drugs, microorganisms, and phagocytes.
    van den Broek PJ
    Rev Infect Dis; 1989; 11(2):213-45. PubMed ID: 2649959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial Virulence and Interactions With Metals.
    German N; Lüthje F; Hao X; Rønn R; Rensing C
    Prog Mol Biol Transl Sci; 2016; 142():27-49. PubMed ID: 27571691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper tolerance and antibiotic resistance in soil bacteria from olive tree agricultural fields routinely treated with copper compounds.
    Glibota N; Grande Burgos MJ; Gálvez A; Ortega E
    J Sci Food Agric; 2019 Aug; 99(10):4677-4685. PubMed ID: 30906996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.