These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 31064257)

  • 1. The structural efficiency of the sea sponge Euplectella aspergillum skeleton: bio-inspiration for 3D printed architectures.
    Robson Brown K; Bacheva D; Trask RS
    J R Soc Interface; 2019 May; 16(154):20180965. PubMed ID: 31064257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum.
    Weaver JC; Aizenberg J; Fantner GE; Kisailus D; Woesz A; Allen P; Fields K; Porter MJ; Zok FW; Hansma PK; Fratzl P; Morse DE
    J Struct Biol; 2007 Apr; 158(1):93-106. PubMed ID: 17175169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D-printed bioinspired spicules: Strengthening and toughening via stereolithography.
    Tavangarian F; Sadeghzade S; Fani N; Khezrimotlagh D; Davami K
    J Mech Behav Biomed Mater; 2024 Jul; 155():106555. PubMed ID: 38640693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nested structure role in the mechanical response of spicule inspired fibers.
    Xiao Y; Fani N; Tavangarian F; Peco C
    Bioinspir Biomim; 2024 May; 19(4):. PubMed ID: 38714195
    [No Abstract]   [Full Text] [Related]  

  • 5. Enhanced bending failure strain in biological glass fibers due to internal lamellar architecture.
    Monn MA; Kesari H
    J Mech Behav Biomed Mater; 2017 Dec; 76():69-75. PubMed ID: 28595803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural monitoring and modeling of the mechanical deformation of three-dimensional printed poly(ε-caprolactone) scaffolds.
    Ribeiro JFM; Oliveira SM; Alves JL; Pedro AJ; Reis RL; Fernandes EM; Mano JF
    Biofabrication; 2017 May; 9(2):025015. PubMed ID: 28349900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanically robust lattices inspired by deep-sea glass sponges.
    Fernandes MC; Aizenberg J; Weaver JC; Bertoldi K
    Nat Mater; 2021 Feb; 20(2):237-241. PubMed ID: 32958878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lightweight lattice-based skeleton of the sponge Euplectella aspergillum: On the multifunctional design.
    Chen H; Jia Z; Li L
    J Mech Behav Biomed Mater; 2022 Nov; 135():105448. PubMed ID: 36166939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lamellar architectures in stiff biomaterials may not always be templates for enhancing toughness in composites.
    Monn MA; Vijaykumar K; Kochiyama S; Kesari H
    Nat Commun; 2020 Jan; 11(1):373. PubMed ID: 31953388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale.
    Aizenberg J; Weaver JC; Thanawala MS; Sundar VC; Morse DE; Fratzl P
    Science; 2005 Jul; 309(5732):275-8. PubMed ID: 16002612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of biosilica in materials science: lessons from siliceous biological systems for structural composites.
    Mayer G
    Prog Mol Subcell Biol; 2009; 47():277-94. PubMed ID: 19198782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ investigations of failure mechanisms of silica fibers from the venus flower basket (Euplectella Aspergillum).
    Morankar SK; Mistry Y; Bhate D; Penick CA; Chawla N
    Acta Biomater; 2023 May; 162():304-311. PubMed ID: 36963595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of a lattice structure inspired by glass sponge.
    Li QW; Sun BH
    Bioinspir Biomim; 2022 Nov; 18(1):. PubMed ID: 36322985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New functional insights into the internal architecture of the laminated anchor spicules of Euplectella aspergillum.
    Monn MA; Weaver JC; Zhang T; Aizenberg J; Kesari H
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):4976-81. PubMed ID: 25848003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated additive design and manufacturing approach for the bioengineering of bone scaffolds for favorable mechanical and biological properties.
    Valainis D; Dondl P; Foehr P; Burgkart R; Kalkhof S; Duda GN; van Griensven M; Poh PSP
    Biomed Mater; 2019 Sep; 14(6):065002. PubMed ID: 31387088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray computed tomography evaluations of additive manufactured multimaterial composites.
    Curto M; Kao AP; Keeble W; Tozzi G; Barber AH
    J Microsc; 2022 Mar; 285(3):131-143. PubMed ID: 34057229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Additive Manufacturing and Performance of Architectured Cement-Based Materials.
    Moini M; Olek J; Youngblood JP; Magee B; Zavattieri PD
    Adv Mater; 2018 Oct; 30(43):e1802123. PubMed ID: 30159935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale mechanical design of the lightweight, stiff, and damage-tolerant cuttlebone: A computational study.
    Lee E; Jia Z; Yang T; Li L
    Acta Biomater; 2022 Dec; 154():312-323. PubMed ID: 36184057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Printing of Ultralight Biomimetic Hierarchical Graphene Materials with Exceptional Stiffness and Resilience.
    Peng M; Wen Z; Xie L; Cheng J; Jia Z; Shi D; Zeng H; Zhao B; Liang Z; Li T; Jiang L
    Adv Mater; 2019 Aug; 31(35):e1902930. PubMed ID: 31267581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinspired energy absorbing material designs using additive manufacturing.
    Ingrole A; Aguirre TG; Fuller L; Donahue SW
    J Mech Behav Biomed Mater; 2021 Jul; 119():104518. PubMed ID: 33882409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.