These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31064258)

  • 21. Single-cell analysis reveals gene-expression heterogeneity in syntrophic dual-culture of Desulfovibrio vulgaris with Methanosarcina barkeri.
    Qi Z; Pei G; Chen L; Zhang W
    Sci Rep; 2014 Dec; 4():7478. PubMed ID: 25504148
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methanogenesis from furfural by defined mixed cultures.
    Boopathy R
    Curr Microbiol; 2002 Jun; 44(6):406-10. PubMed ID: 12000990
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of sulfate and nitrate on methane formation in a freshwater sediment.
    Scholten JC; Stams AJ
    Antonie Van Leeuwenhoek; 1995 Nov; 68(4):309-15. PubMed ID: 8821786
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Peat: home to novel syntrophic species that feed acetate- and hydrogen-scavenging methanogens.
    Schmidt O; Hink L; Horn MA; Drake HL
    ISME J; 2016 Aug; 10(8):1954-66. PubMed ID: 26771931
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic systems for hydrogenotrophic methanogens.
    Sarmiento F; Leigh JA; Whitman WB
    Methods Enzymol; 2011; 494():43-73. PubMed ID: 21402209
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring Hydrogenotrophic Methanogenesis: a Genome Scale Metabolic Reconstruction of Methanococcus maripaludis.
    Richards MA; Lie TJ; Zhang J; Ragsdale SW; Leigh JA; Price ND
    J Bacteriol; 2016 Dec; 198(24):3379-3390. PubMed ID: 27736793
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrogen 'leakage' during methanogenesis from methanol and methylamine: implications for anaerobic carbon degradation pathways in aquatic sediments.
    Finke N; Hoehler TM; Jørgensen BB
    Environ Microbiol; 2007 Apr; 9(4):1060-71. PubMed ID: 17359276
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sodium ion translocation and ATP synthesis in methanogens.
    Schlegel K; Müller V
    Methods Enzymol; 2011; 494():233-55. PubMed ID: 21402218
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermodynamic restrictions determine ammonia tolerance of methanogenic pathways in Methanosarcina barkeri.
    Yi Y; Dolfing J; Jin G; Fang X; Han W; Liu L; Tang Y; Cheng L
    Water Res; 2023 Apr; 232():119664. PubMed ID: 36775717
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbial community dynamics and stability during an ammonia-induced shift to syntrophic acetate oxidation.
    Werner JJ; Garcia ML; Perkins SD; Yarasheski KE; Smith SR; Muegge BD; Stadermann FJ; DeRito CM; Floss C; Madsen EL; Gordon JI; Angenent LT
    Appl Environ Microbiol; 2014 Jun; 80(11):3375-83. PubMed ID: 24657858
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio.
    Dar SA; Kleerebezem R; Stams AJ; Kuenen JG; Muyzer G
    Appl Microbiol Biotechnol; 2008 Apr; 78(6):1045-55. PubMed ID: 18305937
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate-oxidizing bacteria.
    Wang H; Fotidis IA; Angelidaki I
    FEMS Microbiol Ecol; 2015 Nov; 91(11):. PubMed ID: 26490748
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional microbial diversity explains groundwater chemistry in a pristine aquifer.
    Flynn TM; Sanford RA; Ryu H; Bethke CM; Levine AD; Ashbolt NJ; Santo Domingo JW
    BMC Microbiol; 2013 Jun; 13():146. PubMed ID: 23800252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predominant contribution of syntrophic acetate oxidation to thermophilic methane formation at high acetate concentrations.
    Hao LP; Lü F; He PJ; Li L; Shao LM
    Environ Sci Technol; 2011 Jan; 45(2):508-13. PubMed ID: 21162559
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Erosion of functional independence early in the evolution of a microbial mutualism.
    Hillesland KL; Lim S; Flowers JJ; Turkarslan S; Pinel N; Zane GM; Elliott N; Qin Y; Wu L; Baliga NS; Zhou J; Wall JD; Stahl DA
    Proc Natl Acad Sci U S A; 2014 Oct; 111(41):14822-7. PubMed ID: 25267659
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shifts in methanogen community structure and function associated with long-term manipulation of sulfate and salinity in a hypersaline microbial mat.
    Smith JM; Green SJ; Kelley CA; Prufert-Bebout L; Bebout BM
    Environ Microbiol; 2008 Feb; 10(2):386-94. PubMed ID: 18177370
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Methanogenic and Sulfate-Reducing Activities in a Hypersaline Microbial Mat and Associated Microbial Diversity.
    Cadena S; García-Maldonado JQ; López-Lozano NE; Cervantes FJ
    Microb Ecol; 2018 May; 75(4):930-940. PubMed ID: 29116347
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Iron oxides alter methanogenic pathways of acetate in production water of high-temperature petroleum reservoir.
    Pan P; Hong B; Mbadinga SM; Wang LY; Liu JF; Yang SZ; Gu JD; Mu BZ
    Appl Microbiol Biotechnol; 2017 Sep; 101(18):7053-7063. PubMed ID: 28730409
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stimulation of dissimilatory sulfate reduction in response to sulfate in microcosm incubations from two contrasting temperate peatlands near Ithaca, NY, USA.
    St James AR; Richardson RE
    FEMS Microbiol Lett; 2021 Dec; 368(21-24):. PubMed ID: 34875060
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stable carbon isotope fractionation by methylotrophic methanogenic archaea.
    Penger J; Conrad R; Blaser M
    Appl Environ Microbiol; 2012 Nov; 78(21):7596-602. PubMed ID: 22904062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.