BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 31064747)

  • 1. Hyperfiltration predicts long-term renal outcomes in humanized sickle cell mice.
    Kasztan M; Fox BM; Lebensburger JD; Hyndman KA; Speed JS; Pollock JS; Pollock DM
    Blood Adv; 2019 May; 3(9):1460-1475. PubMed ID: 31064747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of ET-1 and sex in glomerular hyperfiltration in humanized sickle cell mice.
    Kasztan M; Pollock DM
    Clin Sci (Lond); 2019 Jul; 133(13):1475-1486. PubMed ID: 31273050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxyurea improves nitric oxide bioavailability in humanized sickle cell mice.
    Taylor CM; Kasztan M; Sedaka R; Molina PA; Dunaway LS; Pollock JS; Pollock DM
    Am J Physiol Regul Integr Comp Physiol; 2021 May; 320(5):R630-R640. PubMed ID: 33624556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kidney Disease among Patients with Sickle Cell Disease, Hemoglobin SS and SC.
    Drawz P; Ayyappan S; Nouraie M; Saraf S; Gordeuk V; Hostetter T; Gladwin MT; Little J
    Clin J Am Soc Nephrol; 2016 Feb; 11(2):207-15. PubMed ID: 26672090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined hydroxyurea and ET
    Taylor C; Kasztan M; Tao B; Pollock JS; Pollock DM
    Acta Physiol (Oxf); 2019 Feb; 225(2):e13178. PubMed ID: 30144292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-Term Endothelin-A Receptor Antagonism Provides Robust Renal Protection in Humanized Sickle Cell Disease Mice.
    Kasztan M; Fox BM; Speed JS; De Miguel C; Gohar EY; Townes TM; Kutlar A; Pollock JS; Pollock DM
    J Am Soc Nephrol; 2017 Aug; 28(8):2443-2458. PubMed ID: 28348063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transgenic sickle mice are markedly sensitive to renal ischemia-reperfusion injury.
    Nath KA; Grande JP; Croatt AJ; Frank E; Caplice NM; Hebbel RP; Katusic ZS
    Am J Pathol; 2005 Apr; 166(4):963-72. PubMed ID: 15793278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Urinary Transforming Growth Factor β-1 as a Marker of Renal Dysfunction in Sickle Cell Disease.
    Ghobrial EE; Abdel-Aziz HA; Kaddah AM; Mubarak NA
    Pediatr Neonatol; 2016 Jun; 57(3):174-80. PubMed ID: 26508723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enuresis and Hyperfiltration in Children With Sickle Cell Disease.
    Zahr RS; Ding J; Kang G; Wang WC; Hankins JS; Ataga KI; Lebensburger JD; Porter JS
    J Pediatr Hematol Oncol; 2022 Oct; 44(7):358-362. PubMed ID: 35180759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progressive glomerular and tubular damage in sickle cell trait and sickle cell anemia mouse models.
    Saraf SL; Sysol JR; Susma A; Setty S; Zhang X; Gudehithlu KP; Arruda JAL; Singh AK; Machado RF; Gordeuk VR
    Transl Res; 2018 Jul; 197():1-11. PubMed ID: 29476712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nephropathy of sickle cell trait and sickle cell disease.
    Ataga KI; Saraf SL; Derebail VK
    Nat Rev Nephrol; 2022 Jun; 18(6):361-377. PubMed ID: 35190716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renal kallikrein: a risk marker for nephropathy in children with sickle cell disease.
    Bergmann S; Zheng D; Barredo J; Abboud MR; Jaffa AA
    J Pediatr Hematol Oncol; 2006 Mar; 28(3):147-53. PubMed ID: 16679937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic variants and cell-free hemoglobin processing in sickle cell nephropathy.
    Saraf SL; Zhang X; Shah B; Kanias T; Gudehithlu KP; Kittles R; Machado RF; Arruda JA; Gladwin MT; Singh AK; Gordeuk VR
    Haematologica; 2015 Oct; 100(10):1275-84. PubMed ID: 26206798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An update on sickle cell nephropathy.
    Alhwiesh A
    Saudi J Kidney Dis Transpl; 2014 Mar; 25(2):249-65. PubMed ID: 24625990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nephrin as a biomarker of sickle cell glomerulopathy in Malawi.
    Heimlich JB; Chipoka G; Elsherif L; David E; Ellis G; Kamthunzi P; Krysiak R; Mafunga P; Zhou Q; Cai J; Gopal S; Key NS; Ataga KI
    Pediatr Blood Cancer; 2018 Jun; 65(6):e26993. PubMed ID: 29411937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of renal function in Indian patients with sickle cell disease.
    Lakkakula BVKS; Verma HK; Choubey M; Patra S; Khodiar PK; Patra PK
    Saudi J Kidney Dis Transpl; 2017; 28(3):524-531. PubMed ID: 28540888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperfiltration during early childhood precedes albuminuria in pediatric sickle cell nephropathy.
    Lebensburger JD; Aban I; Pernell B; Kasztan M; Feig DI; Hilliard LM; Askenazi DJ
    Am J Hematol; 2019 Apr; 94(4):417-423. PubMed ID: 30592084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteinuria in children with sickle cell disease.
    Marsenic O; Couloures KG; Wiley JM
    Nephrol Dial Transplant; 2008 Feb; 23(2):715-20. PubMed ID: 18065783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renal tubular dysfunction in children with sickle cell haemoglobinopathy.
    Badr M; El Koumi MA; Ali YF; El-Morshedy S; Almonem NA; Hassan T; El Rahman RA; Afify M
    Nephrology (Carlton); 2013 Apr; 18(4):299-303. PubMed ID: 23432792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renal protection by atorvastatin in a murine model of sickle cell nephropathy.
    Zahr RS; Chappa P; Yin H; Brown LA; Ataga KI; Archer DR
    Br J Haematol; 2018 Apr; 181(1):111-121. PubMed ID: 29527679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.